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Introduction

In April, 1977 when my first problem list [38,Kirby,1978] was finished, a good topologist
could reasonably hope to understand the main topics in all of low dimensional topology.
But at that time Bill Thurston was already starting to greatly influence the study of 2- and
3-manifolds through the introduction of geometry, especially hyperbolic. Four years later
in September, 1981, Mike Freedman turned a subject, topological 4-manifolds, in which we
expected no progress for years, into a subject in which it seemed we knew everything. A
few months later in spring 1982, Simon Donaldson brought gauge theory to 4-manifolds
with the first of a remarkable string of theorems showing that smooth 4-manifolds which
might not exist or might not be diffeomorphic, in fact, didn’t and weren’t. Exotic R4’s,
the strangest of smooth manifolds, followed. And then in late spring 1984, Vaughan Jones
brought us the Jones polynomial and later Witten a host of other topological quantum field
theories (TQFT’s). Physics has had for at least two decades a remarkable record for guiding
mathematicians to remarkable mathematics (Seiberg–Witten gauge theory, new in October,
1994, is the latest example).

Lest one think that progress was only made using non-topological techniques, note that
Freedman’s work, and other results like knot complements determining knots (Gordon-
Luecke) or the Seifert fibered space conjecture (Mess, Scott, Gabai, Casson & Jungreis)
were all or mostly classical topology.

So editing a problem list in 1994 is a very different task than in 1977. It would not
have been possible for this editor without an enormous amount of help from others. For no
particular reason, I did not keep track at first of who provided help with the Updates of the
lists from 1977 and 1982 [39,Kirby,1984], so there are no names attached to the Updates.
However Geoff Mess alone must have provided me with half the Updates in dimensions
2 and 3, as well as others. I also received much help from Joel Hass, Cameron Gordon,
Dieter Kotschick, Walter Neumann, Peter Teichner, Larry Taylor, Jonathan Hillman, Peter
Kronheimer, Marty Scharlemann, Ron Stern, Andrew Casson, Francis Bonahon, Paulo Ney
de Souza, Hyam Rubinstein, Lee Rudolph, Robert Myers, Bob Gompf, Selman Akbulut,
Chuck Livingston, Tom Mrowka, Mike Freedman, Pat Gilmer, Michel Boileau, Peter Scott,
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Abby Thompson, Steve Bleiler, Curt McMullen, Raymond Lickorish, Tsuyoshi Kobayashi,
Yasha Eliashberg, Yukio Matsumoto, Danny Ruberman, Žarko Bižaca, Wolfgang Metzler,
Jim Milgram, Dave Gabai, Darryl McCullough, and many others who contributed to Updates
involving their own work. One can imagine an editor who reads and understands hundreds
of papers so as to personally write and vouch for each Update; that is not the case here.
Rather I am indebted to many erudite and hardworking friends.

The new Problems often have a name or names attached; occasionally the name is the
originator of a conjecture or question, but most of the time is the person who helped me
write the problem. I’d like to thank also a handful of people who reviewed parts of the
penultimate draft: Mess, Gordon, Neumann, Kotschick, Akbulut and Gompf.

One might expect, with a problem list of this size, that the list is all inclusive. Wrong. Of
course I have made attempts to cover obvious areas, but I never wished to take on the task
of covering everything. For example, laminations are already beautifully covered by Dave
Gabai in another problem list in these Proceedings. In the 1977 list, I particularly tried to
get problems involving related subjects, but this time, that task was too daunting and no
great effort was made. There are not as many problems involving contact structures, graph
theory, dynamics, for example, as there could have been.

Will Kazez suggested this task in June 1992, no doubt hoping that I would be done
shortly after the August, 1993, Georgia conference. But not much was accomplished before
the Georgia conference at which many of the problems were proposed. More were added at
conferences in Warwick (August, 1993), Oberwolfach (September 1993), the Park City gauge
theory conference (July, 1994), Huia, New Zealand (December, 1994), Princeton (January,
1995), Max Planck Institute, Bonn (May, 1995), and Gokova, Turkey (May 1995); and many
problems turned up by e-mail or through personal contacts.

Another half year would have elapsed if I had not had the help of Paulo Ney de Souza
for Updates, computer drawn figures, wise advise on editing, and (with Faye Yeager) high
tech typing and editing. He is primarily responsible for the huge task of organizing the
bibliography and making it complete and accurate. Significant further help in LATEXing was
provided by Larry Taylor, and in producing figures by Silvio Levy, Leo Tenenblat, and Jonas
Gomes.

The format of the 1977 list has, in a Procrustean way, been continued. There are still five
chapters, one each for the four dimensions plus miscellaneous. The old problems keep their
numbers, except that the 1982 list of 4-manifold problems with a few 2-in-4 knot problems,
have had the N dropped, e.g. Problem N4.45 became Problem 4.45. Then the new Problems
continue the numbering, so, for example, in Chapter 1, Problems 1.1 through 1.51 are from
1977, Problems 1.52 through 1.57 are from 1982, and Problems 1.58 through 1.105 are new.
This means that, for example, problems on knot groups can appear in three different sections
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rather than together. But there is liberal cross referencing, as in the table of contents for
each chapter.

The old Problems are stated without changes, except for completed references and cor-
rections of errors.

The texts of the Problems contain abbreviated references, typically just the author,
journal, and year, which should usually be enough for the reader to guess the paper rather
than pause to consult the bibliography where the full citation occurs.

There are indices of conjectures, and an index of mathematical terms including symbols,
knots and manifolds. Finally, there is a list of old problem lists.

The manuscript was prepared in LATEX 2ε based on a specially enlarged version of TEX
running on a SUN Sparcstation 20 at UC Berkeley over the last year, merging several pre-
existing documents. Each problem was kept as a single file that could be formatted indi-
vidually and sent out by e-mail. These files are then called by a master file that formats
the whole document using several standard LATEX packages as well as in-house developed
ones and a package developed by Larry Taylor enabling each bibliographic item to list the
problems in which it is cited.

All graphics have been produced in PostScript; most of them were drawn by the Math-
ematica program NiceKnots by Silvio Levy, with some of them further manipulated by
CorelDraw and labels introduced using the geompsfi package from the Geometry Center,
Minn. Care was taken to prepare a source document for later translation in HTML, PDF,
and other electronic formats, which is now work in progress.

Berkeley

April 25, 1996
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Chapter 1

Knot Theory

• Problems 1.1–1.51 (1977), 1.52–1.57 (1982), 1.58–1.105 (new).

• S1 ↪→ S3, 1.1–1.47, 1.52, 1.53, 1.58–1.101.

• S2 ↪→ S4, 1.48–1.51, 1.54–1.57, 1.103–1.105.

• Braids, 1.7, 1.8, 1.84, 1.100.

• Knot groups, 1.9–1.14, 1.57, 1.85, 1.86.

• Properties P, R, 1.15–1.18, 1.82.

• Branched covers, 1.21–1.29, 1.74.

• Concordance and slice knots, 1.19, 1.30–1.47, 1.52, 1.53, 1.93–1.97.

• Various genera, 1.1, 1.20, 1.40–1.42, 1.83.

• Crossing, unknotting and tunnel numbers, 1.63–1.73.

• Hyperbolic knots, 1.75–1.77.

• Dehn surgery, 1.15–1.18, 1.77–1.82.

• Jones polynomial, etc., 1.87–1.92.

• Contact, complex structures, 1.98–1.102.
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8 CHAPTER 1. KNOT THEORY

Introduction

Definitions and notation: most definitions are given in the problems, but here are
some that are widely used.

A diagram for a knot K in S3 is, intuitively, how we draw a knot on the blackboard;
that is, it is a generic projection onto a plane (but preserving over and undercrossings) of a
representative in the isotopy class of submanifolds in S3 which is K.

Then the crossing number c(K) of a knot K in S3 is the minimal number of crossings in
a diagram for K, the minimum being taken over all possible diagrams of K.

The unknotting number u(K) of a knot K in S3 is the minimum, taken over all diagrams
of K, of the number of crossings which must be changed to obtain a diagram of the unknot.

The tunnel number t(K) of a knot K in S3 is the minimal number of arcs which must be
added to the knot, forming a graph with three edges at a vertex, so that the complement in
S3 (of an open regular neighborhood of the graph) is a handlebody. The boundary of this
handlebody is then a minimal Heegaard splitting of the knot complement. This graph is
the simplest graph, formed by adding arcs to the knot, which (allowing edges to slide over
edges) can be moved into a plane, yet contains the knot. This construction amounts to the
same thing as boring holes in the complement of K, whence the name tunnel.

Two knots fi : Sn ↪→ Sn+2, i = 0, 1, are concordant if the fi extend to an imbedding
F : Sn × I ↪→ Sn+2 × I (this is occasionally called cobordism, but that term should be
reserved for the case in which any oriented Nn+1 with boundary Sn∪−Sn is allowed in place
of Sn × I).

A knot is slice if it is concordant to the unknot. A knot K = f(S1) ⊂ S3 is called ribbon
if f extends to an immersion f : B2 → S3 whose singularities are always of the form:

For knots K in S3, the genus of K is the minimal genus over all oriented Seifert surfaces
for K; the free genus is the minimal genus over all oriented Seifert surfaces for K whose
complements have free fundamental group; the 4-ball genus is the minimal genus over all
oriented surfaces in B4 with boundary K; the r-shake genus is the minimal genus over all



9

closed surfaces, which are smoothly imbedded in B4 with a 2-handle attached along K with
framing r (r = 0 is the most interesting case), and which represent the generator of H2.

If K is oriented, then the reverse of K is K with the opposite orientation, the obverse of
K is the reflection of K in a plane, and the inverse of K is the concordance inverse of K;
note that the composition of two of these gives the third. K is called reversible, obvertible,
or invertible if there is an orientation preserving homeomorphism h : S3 → S3 taking K to
its reverse, obverse, or inverse, respectively.

An unoriented knot K is amphicheiral if it is isotopic to its obverse, which is equivalent to
the existence of an orientation reversing homeomorphism h : S3 → S3 such that h(K) = K.
If K is oriented and h preserves the orientation of K, then K is positively amphicheiral; if
the orientation is reversed, then K is negatively amphicheiral (the latter holds only if K is
isotopic to its inverse).

In the last two paragraphs, if h can be chose to be an involution, then the adjective
strongly should be adjoined to the definition.

Let J be a knot in a solid torus T = S1 ×B2; J represents an integer in H1(T ;Z) called
the winding number. Imbed T in S3 as a tubular neighborhood of a knot J

′
using the 0-

framing of J
′
; then the image of J is a knot K called the satellite of J

′
using the pattern J ;

also, J
′
is a companion of K.

Let f : S1 × B2 ↪→ S3 be a trivialization of the normal disk bundle of K = f(S1 × 0),
for which f(S1× (1, 0)) lies on a Seifert surface for K (equivalently, f(S1× (1, 0)) represents
0 ∈ H1(S3 − K;Z)). This trivialization is called the 0-framing of K, and it defines the
longitude λ (= f(S1×(1, 0))) (the meridian µ is just f(point×∂B2)). Framing n is obtained
from n ∈ π1(SO(2)) (in this case, f(S1× (1, 0)) should wind n times around K as in a right-
handed screw). If a 2-handle is added to B4 along K with framing n, then the boundary
is the result of n-surgery on S3 along K. (p,q)-Dehn surgery is more general; one removes
f(S1 ×B2) and glues it back in so that point×B2 is glued to pµ+ qλ (the n-surgery above
corresponds to (n,1)-Dehn surgery).
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Problem 1.1 (Lickorish) Conjecture: Given a knot K, any band connected sum with an
unknot is still a knot. This follows from the

Conjecture: genus(K) + genus(L) ≤ genus(K #b L).

Remarks: The group H of K#b(unknot) has a quotient which is obtained from the group
G of K by adding one new generator and one new relation in which the exponent sum of the
new generator is 1. It follows from ([373,Gerstenhaber & Rothaus,1962,Proc. Nat. Acad.
Sci. U.S.A.] (also see Problem 5.7)), that if G has a nonabelian quotient Q which imbeds
in a compact connected Lie group, then H has a quotient which contains Q, and hence
is nonabelian. The first conjecture is therefore true for knots K whose group G has this
property, in particular those with ∆(t) 6= 1 and those with G group (Problem 3.33).

Update: The conjectured inequality is true; equality holds iff there is a minimal genus
surface for K #b L which is the union of a minimal genus surface for K, one for L, and the
band b. This was proved independently and simultaneously by Gabai [356,1987b,Topology]
and Scharlemann [970,1989,J. Differential Geom.].

Problem 1.2 (A) (T. Matumoto) Suppose the band connected sum of a trivial link (of
two components) is the trivial knot. Is the band isotopic to the trivial band?

(B) (H. Morton) Suppose we attach a half-twisted band to the unknot and get the unknot.
Is the band isotopic to the trivial band?

Remarks: Note that these problems are relevant to the question of whether an imbedded
T 2 (or RP2) in R4 with 4 (or 3) critical points is unknotted (see Problem 4.30).

Update:
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(A) Yes [968,Scharlemann,1985a,Invent. Math.].

(B) Yes [109,Bleiler & Scharlemann,1988,Topology].

Problem 1.3 (Gordon) Is there a knot K such that if a crossing is changed as below, one
gets the unknot in one case and the unlink in the other?

K unlinkunknot

Remarks: Such a knot K bounds a smooth imbedded 2-ball D in B4 whose complement
is a homotopy circle since (B4, D) × I is unknotted. There are examples of the latter, e.g.,
doubles of slice knots [407,Gordon & Sumners,1975,Math. Ann.]. The answer is no if the
answer to Problem 1.2(A) is yes.

Update: There is no such knot because the answer to Problem 1.2(A) is yes.

Problem 1.4 (Milnor) Is the unknotting number of the (p, q)-torus knot, (p, q) = 1, equal
to (p− 1)(q − 1)/2?

Remarks: The unknotting number is the minimum number of crossings which must be
changed to get the unknot. For the algebraic geometric background for this problem, see
[767,Milnor,1968b].

The number (p − 1)(q − 1)/2 is half the degree of the Alexander polynomial of the
(p, q)-torus knot. However, it is not even true in general that the unknotting number is
≥ 1

2
deg(∆(t)), for the knot 820 (see Figure 1.4.1) has unknotting number 1 and ∆(t) =

1− 2t+ 3t2 − 2t3 + t4.

Figure 1.4.1. 820
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Update: The equality holds [623,Kronheimer & Mrowka,1993,Topology]. In fact, they
prove more: if a knot K = V ∩ S3 where V is a complex curve in C2 with an isolated
singularity at the origin, and if Vε is the Milnor fiber, then the unknotting number of K is
equal to the genus of Vε. A lower bound for the unknotting number of an arbitrary knot K
is its 4-ball genus; if K bounds a complex surface V , then the 4-ball genus of K is equal to
the genus of V , [960,Rudolph,1993,Bull. Amer. Math. Soc.].

Problem 1.5 (Van Buskirk) Conjecture: K is amphicheiral iff K is invariant under
reflection through the origin.

Remarks: True for knots with ≤ 10 crossings. Note that a knot K is invariant under
reflection through a plane (hence amphicheiral) iff K = J#− J for some knot J . For such
knots, the conjecture is true.

Update: The conjecture is false [447,Hartley,1980,Math. Zeit.]. Hartley gives an example
of an orientation reversing diffeomorphism h : (S3, K) → (S3, K), preserving the orienta-
tion of K (thus K is positively amphicheiral ), and shows there is no orientation reversing
involution of S3 keeping K invariant as a set (K is not strongly amphicheiral ).

Problem 1.6 (Montesinos) Conjecture: Each invertible knot is strongly invertible.

Remarks: A knot K is invertible if there exists an orientation preserving homeomorphism
µ of S3 which takes K to itself but reverses the orientation of K. It is strongly invertible
if µ is also an involution; in this case, µ is equivalent to a rotation about an axis [1090,
Waldhausen,1969,Topology]. (Added in proof. False, W. Whitten.)

Update: The conjecture is false; examples were given in [447,Hartley,1980,Math. Zeit.]
and [1114,Whitten,1981,Pacific J. Math.]. In fact Whitten proves that a knot K is strongly
invertible iff each double of K is strongly invertible; since any double of a knot is invertible
[994,Shubert,1953,Acta Math.], begin with a non-invertible knot and any of its doubles are
counterexamples.

Boileau [114,1985] gives a complete answer to Montesinos’ Conjecture; namely that an
invertible knot K is strongly invertible iff K is not a satellite with winding number zero (e.g.
a double).

Note that reversible is the modern name for what is called invertible in this old prob-
lem; probably the word invertible should be reserved for a knot which is isomorphic to its
concordance inverse (see the introduction to this Chapter).
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Problem 1.7 (Stallings) Characterize those braids β of n strands whose closed braid β̂ is
the unknot. Specifically, for σi the generators of the braid group, let σij, i < j, be defined by

σij = (σiσi+1 . . . σj−2)σj−1(σiσi+1 . . . σj−2)
−1.

The braid σij crosses the ith and jth strands in front of all those strands in between.

Conjecture: β̂ is the unknot iff β̂ is conjugate to a product of n − 1 elements of the
form σij or σ−1

ij .

Update: The conjecture is false, for it would imply that there are only finitely many non-
conjugate n-braids which close to the unknot; however, Morton [805,1978,Topology] showed
that the braids σ1σ

2i+1
2 σ3σ

−2i
2 give an infinite family of non-conjugate 4-braids which close

to the unknot.

Furthermore, the braids in the conjecture are precisely those n-braids whose closure spans
a disk meeting the braid axis in exactly n points [807,Morton,1985].

Problem 1.8 (Stallings) Suppose β is a word in the generators σ1, . . . , σn−1 and their
inverses in the braid group Bn. If the length of β is minimal over all words representing the
same element of Bn, call β minimal.

Conjecture: If the last letter of a minimal word β is σεi , then the word βσi is again
minimal (ε = ±1).

Update: Still open in general.

Problem 1.9 (Fox & Birman) Let G be the knot group of a nontrivial knot K and let
µ ∈ G be represented by a meridian. Let N(µ2) be the normal closure of µ2 in G.

Conjecture: G/N(µ2) is never abelian, i.e., is never Z/2Z.

Remarks: Let H be the kernel of the obvious homomorphism G → Z/2Z and note that
the normal closure of µ2 in H is still N(µ2). Then H/N(µ2) is of index 2 in G/N(µ2) so
the conjecture is that H/N(µ2) is never trivial. But H is the knot group of K in the double
branched cover M3; if H/N(µ2) is trivial, then M3 is a homotopy 3-sphere which must be
fake since by Waldhausen there is no involution on S3 with knotted fixed point set.

Update: The conjecture is true, using the remarks and the fact that the proof of the
Smith Conjecture (see Problem 3.38) shows that the double branched cover of K is never a
homotopy 3-sphere.
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Problem 1.10 (L. Moser) Is there a geometric characterization of knots whose groups
have one relator?

Remarks: The groups of 2-bridge knots are presented on 2 generators and one relator where
the generators are meridians. The groups of torus knots also are presented on 2 generators
with one relator but the generators are not meridians.

Update: No characterization is yet known, but it is conjectured to be tunnel number one
knots. Bleiler [103,1994,Proc. Amer. Math. Soc.] has proven this conjecture for cable
knots, and Bleiler & A. Jones ([107,1995b] and [106,1995a]) have verified most of the steps
to prove it for satellite knots. Note that this conjecture is a special case of: when does the
minimal number of generators for π1 of a 3-manifold equal the minimal genus of a Heegaard
splitting? Further note that Boileau & Zieschang [127,1984,Invent. Math.] exhibit a Seifert
fibered space with two generators but genus three (this phenomenon has not yet been seen
in a 3-manifold with non-trivial boundary).

Problem 1.11 (Cappell & Shaneson) Is every knot, whose group is generated by 2 merid-
ians, actually a 2-bridge knot? Same for n meridians and n-bridge knots.

Remarks: (Bailey) If yes, then Fox’s bushel basket of homotopy 3-spheres [324,1962b] con-
tains only S3 (see [161,Burde,1971,Canad. J. Math]).

Update: Yes for knots and links when n = 2, if the Orbifold Geometrization Conjecture is
true (see Problem 3.46).

Problem 1.12 (J. Simon) Let GK = π1(S3 −K). Conjectures: If there is a non-trivial
epimorphism φ : GL � GK, then

(A) n(GL) > n(GK) where n(G) is the minimum number of (meridian?) generators; (Added
in proof, 1977: False, e.g. the group of the torus knot (3p, 2), p odd, maps onto the
trefoil knot group [450,Hartley & Murasugi,1978,Canad. J. Math].)

(B) genus(L) ≥ genus(K).

Remarks: (B) is known if genus K = 1
2
deg∆K(t) or if φ(lL) = (lK)n, l = longitude.

(C) Given K, there exists a number NK such that any chain of epimorphisms of knot groups
GK � GL1 � GL2 � . . .� GLn with n ≥ NK contains an isomorphism.

Remarks: This implies knot groups are Hopfian (Problem 3.33). Knot groups seem
like the right place to start, but the conjecture could be made for compact 3-manifold
groups.
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(D) Given K, there exist only finitely many knot groupsG for which there is an epimorphism
GK � G.

Update: In (C), note that knot groups are residually finite, hence Hopfian (see the Update
to Problem 3.33). Also note Problem 3.100 which is a related problem for closed 3-manifolds.

Problem 1.13 (J. Simon) Conjecture: Let K be a (p, q)-cable about a nontrivial knot
K0 such that |p| = 1 or 2, and let L be a knot such that π1(S3 − K) ∼= π1(S3 − L); then
S3 −K and S3 − L are homeomorphic.

Remarks: The conjecture covers the only remaining case where it is not yet known whether
the group of a prime knot in S3 determines the complement up to homeomorphism. If we
draw the (p, q)-torus knot on ∂(S1 × B2) (the knot represents q ∈ H1(S1 × B2)) and we
assume |q| 6= (1, 0) and tie S1×B2 into a knot K0 so that S1× (1, 0) is homologically trivial
in S3 −K0, then the resulting knot is the (p, q)-cable about K0.

The knot is composite or cable iff the complement of K, C3(K), admits a proper imbed-
ding of an annulus A that is essential in the sense that (i) π1(A) → π1(C3(K)) is monic,
and (ii) A cannot be pushed into ∂C3(K) by a homotopy fixing ∂A; then K is composite if
a boundary curve of A generates H1(C3(K)) and is cable otherwise [999,Simon,1973,Ann.
of Math.].

Suppose π1(C3(K)) ∼= π1(C3(L)). If C3(K) has no essential annulus, then C3(K) is
homeomorphic to C3(L) [303,Feustel,1976,Trans. Amer. Math. Soc.; Theorem 10]. If in
addition K has Property P (see Problem 1.15), then K and L are equivalent knots. Assume
now that C3(K) has an essential annulus A. If K is composite, then L is also composite and
their prime factors are equivalent, e.g., granny and square knots [304,Feustel & Whitten,
1978,Canad. J. Math].

Suppose K is cable. Then K is a torus if π1(C3(K)) has a nontrivial center [162,Burde &
Zieschang,1966,Math. Ann.] or if C3(K) admits no essential imbedding of a torus [Feustel,
ibid.]; in this case K is equivalent to L. Hence assume K0 is nontrivial. If |p| ≥ 3 or
K0 has Property P, then K is equivalent to L [Feustel & Whitten, ibid.]; otherwise L is a
(±p,±q)-cable about a knot L0 such that C3(K0) ∼= C3(L0), and we arrive at the conjecture.

Note that the papers [Feustel & Whitten, ibid.] and [1000,Simon,1975,Proc. Amer.
Math. Soc.] show that the conjectures, all knots have Property P for S3 and comple-
ments of prime knots are determined by their groups, are nearly equivalent.

Update: The conjecture is true [1115,Whitten,1986,Bull. Amer. Math. Soc.], [405,Gordon
& Luecke,1989,J. Amer. Math. Soc.], [1028,Swarup,1986,Bull. Amer. Math. Soc.].
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Problem 1.14 (J. Simon) Characterize those knots K in S3 for which the commutator
subgroup G′ of π1(S3 −K) has infinite weight (is not normally generated by a finite number
of elements).

Conjecture: K has infinite weight if K has a companion of winding number zero.

Remarks: The conjecture is true for the untwisted double of any knot.

Construct a knot K by putting a knot J in a solid torus T and tying T in a knot J ′; then
J ′ is called a companion of K and J is a satellite of K. K represents an integer in H1(T ;Z)
which is called the winding number of J ′.

If G′ has finite weight, then the Alexander polynomial of K is monic.

Update: The conjecture is false [671,Livingston,1987,Proc. Amer. Math. Soc.].

The modern terminology for satellites is this, using the above notation: J is called a
pattern, meaning it describes a satellite for any knot that T is tied into; J ′ is still a companion
(K can have many companions); K is a satellite of J ′ with pattern J .

Problem 1.15 Does every nontrivial knot K have Property P ; that is, does Dehn surgery
on K always give a nonsimply connected manifold?

Remarks: Knots with Property P (introduced by Bing & Martin, [89,Bing & Martin,1971,
Trans. Amer. Math. Soc.]) include:

• torus knots (Seifert), [471,Hempel,1964,Proc. Amer. Math. Soc.], [Bing & Martin,
ibid.], [398,Gonzalez-Acuña,1970,Bol. Soc. Mat. Mexicana];

• twist knots [Bing & Martin, ibid.], [Gonzalez-Acuña, ibid.], [927,Riley,1974,Quart. J.
Math. Oxford Ser. (2)];

• composite knots [850,Noga,1967,Math. Zeit.], [Bing & Martin. ibid.], [Gonzalez-
Acuña, ibid.];

• doubled knots [Bing & Martin, ibid.], [Gonzalez-Acuña, ibid.];

• weakly splittable knots [224,Connor,1969]; most cable knots [997,Simon,1970], [Gonzalez-
Acuña, ibid.];

• some pretzel knots [Simon, ibid.], [Riley, ibid.];

• some 2-bridge knots [Riley, ibid.], [722,Mayland, Jr.,1977];
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• and other knots [827,Nakagawa,1975,Publ. Res. Inst. Math. Sci.], [845,Neuzil,1975,
Trans. Amer. Math. Soc.], [998,Simon,1971,Trans. Amer. Math. Soc.], [665,Lither-
land,1979,Proc. London Math. Soc.].

Update: Gordon & Luecke [405,1989,J. Amer. Math. Soc.] prove that Dehn surgery on a
non-trivial knot never gives S3. But a homotopy 3-sphere is still possible. But Dehn surgery
on the following classes of knots always gives non-trivial fundamental group:

• satellite knots [357,Gabai,1989,Topology].

• 2-bridge knots [1032,Takahashi,1981] by considering representations into PGL(2,C).

• 2-bridge knots Delman [241,1995,Topology Appl.] and Naimi [826,1995] independently
constructed essential laminations and by [364,Gabai & Oertel,1989,Ann. of Math.]
these have infinite fundamental group.

• classical pretzel knots and more generally Montesinos knots with all odd denominators
[241,Delman,1995,Topology Appl.].

• nonflat alternating knots [929,Roberts,1995].

Problem 1.16 Does every nontrivial knot K have Property R, that is, does surgery on K
with framing 0 always give a manifold other than S1 × S2, as expected?

Remarks: If surgery gives S1 × S2, then K has trivial Alexander polynomial, is prime, is
not a doubled knot [811,Moser,1974,Pacific J. Math.], is a slice of an unknotted S2 in S4

[580,Kirby & Melvin,1978,Invent. Math.], and does not have a genus one unknotted Seifert
surface [637,Lambert,1977,Proc. Amer. Math. Soc.].

Does 0-surgery on K give a manifold which is not even a homotopy S1 × S2? This is
equivalent, using infinite cyclic covers, to the question: If G is a knot group and l ∈ [G,G]
is the longitude, is [G,G] not normally generated by l? (Note that the normal closure of l in
G coincides with the normal closure of l in [G,G], since l commutes with a meridian, which
generates G/[G,G] = Z.) Also, see Problem 5.7.

A homology 3-sphere contains a knot K whose 0-surgery produces S1 × S2 iff the ho-
mology 3-sphere is the boundary of a 4-manifold made with a 0-handle, a 1-handle and a
2-handle. For these homology 3-spheres the appropriate conjecture is that 0-surgery on K
alone produces S1 × S2.

Update: Gabai [355,1987a,J. Differential Geom.] proved that every knot has Property
R. Moreover he proved that 0-surgery on K gives an irreducible 3-manifold M for which
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genus(K) equals the minimum genus of surfaces in M representing the homology class of a
capped off Seifert surface for K (see also Problem 1.41B). Thus M is not even homotopy
equivalent to S1 × S2.

The last question in the Remarks appears to be wide open.

Problem 1.17 (R. Edwards, after F. Laudenbach & Poénaru) Suppose K is a non-
trivial knot in S3 with longitude l, tubular neighborhood N , and group G = π1(S3 −K). It
is an appealing conjecture, made by Poénaru (and others?), that

(A) (algebraic version): l ∈ G cannot be a product of conjugates of itself, with zero exponent
sum; that is, there do not exist a1, . . . , a2n ∈ G such that l = a−1

1 la1a
−1
2 l−1a2 . . . a

−1
2n l
−1a2n

(the exponents of l alternate here only for convenience).

(B) (geometric version): There cannot be an imbedding of a sphere-with-(2n + 1)-holes F 2

in S3− intN , with the 2n+ 1 boundary components of F imbedded onto parallel copies
of l in ∂N so that their algebraic sum in ∂N is l.

Remarks:

1. Clearly (A) ⇒ (B). Conversely, (B) ⇒ (A), for given that (A) fails, there is a mapf :
(F 2, ∂F 2) → (S3 − intN, ∂N), imbedding ∂F 2 onto 2n + 1 copies of l with algebraic
sum l in ∂N . Let MK denote the 3-manifold obtained by doing 0-framed surgery on
S3 along K. Apply the Sphere Theorem to the capped-off map f taking S2 into MK ,
to get an imbedded, nonseparating S2 in MK . Such an S2 must represent a generator
of H2(MK) = Z, and so it provides, after puncturing, the desired geometric surface F 2

of (B).

2. If l normally generates [G,G] (cf. previous problem), then (A) is false, as one sees by
writing l ∈ [[G,G], [G,G]] as l =

∏
j[cj, dj], cj , dj ∈ [G,G], and then writing each cj

and dj as a product of conjugates of l. In other words, if the Poénaru Conjecture holds
for a knot K, then K has homotopy Property R.

3. This question is related to the previous one, for ifMK is homotopy-equivalent to S1×S2

(MK as above), thenK bounds in S3 the punctured sphere F 2 as in (B). (Is the converse
true? Cf. the final remarks of Problem 5.7.) In the study of 4-manifolds, this question
arises from the following question: Suppose W 4 is a Mazur-like contractible 4-manifold
constructed by attaching a 2-handle to S1×B3 along a degree 1 curve Γ in S1× ∂B3,
and suppose ∂W 4 = S3. Is Γ necessarily unknotted in S1 × S2?
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4. F. Laudenbach has shown that the conjecture is true for n = 1.

Update: Gabai’s work (see Problem 1.16 Update) implies that (B) and hence (A) are true,
because 0-surgery on K is irreducible.

Problem 1.18 (J. Martin) (A) Suppose T1 and T2 are solid tori with T2 ⊂ int T1, such
that the wrapping number of T2 in T1 is nonzero, and the winding number of T2 in T1

is zero. Can T2 be removed and sewn back differently (Dehn surgery) so that the result
is still a solid torus?

Remarks: Winding number zero means the homomorphism H1(T2)→ H1(T1) is zero;
nonzero wrapping number means that T2 does not lie in a 3-ball in T1. An example of
such a T2 would provide a knot without Property P (Problem 1.15).

K1

K2

(For let T ′1 be the result of Dehn surgery on T2. Then winding number zero implies
that the diffeomorphism between T1 and T ′1 preserves the meridian. Imbed T1 in a
knotted fashion in S3 so that T2 is knotted in S3. Then Dehn surgery on T2 gives S3.)

(B) Let K1 and K2 be unknots in S3 as drawn above, and assume that K1 and K2 are
geometrically linked but algebraically unlinked. Can an example be found so that if the
overcrossing in K1 is changed to an undercrossing, then K1 remains unknotted?

Remarks: An example for (B) provides one for (A). For +1-surgery on K2 changes
the crossing in K1. If K1 is unknotted in both cases, then choose T1 = S3 −K1 and
T2 = K2 × B2, satisfying (A).

(C) Let T be the solid torus and imagine T standardly imbedded in each of S3 and S1×S2.
Is there a simple closed curve J in T such that
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1. J does not bound a disk in T , and

2. J bounds a disk in each of S3 and S1 × S2?

Remarks: If so, there is a knot failing Property P or Property R. For perform +1-
surgery on J in T and get either (i) a solid torus, or (ii) a cube with a knotted hole
(= knot complement). If (i), proceed as in (A). If (ii) then S1 × S2 is the union of a
solid torus and a cube with a knotted hole; that is, it is the result of 0-surgery on the
knot making the knotted hole.

Update: The example asked for in (A) does not exist because surgery on a knot cannot give
S3 (Property P for S3, see Problem 1.15); the example asked for in (B) does not exist because
it would give an example for (A) (for an earlier solution, see [108,Bleiler & Scharlemann,
1986,Math. Ann.]); finally no example exists satisfying (C) because of (A) or Property R
(see Problem 1.16).

Problem 1.19 (Akbulut & Kirby) Conjecture: If 0-framed surgeries on two knots give
the same 3-manifold, then the knots are concordant.

Remarks: This is true if one knot is the unknot ([580,Kirby & Melvin,1978,Invent. Math.],
see Problem 1.16). If homotopy 4-spheres are spheres, then it is true if one knot is slice. In
general all known concordance invariants of the two knots are the same; this is true even if
we assume only that the 0-surgeries give homology bordant 3-manifolds.

Update: Still open. Note that 0-framed surgery on the unknot is the only case giving
S1 × S2 [355,Gabai,1987a,J. Differential Geom.].

Problem 1.20 (Giffen & Siebenmann) A Seifert surface F for a knot K in S3 is called
free if π1(S3− F ) is free (equivalently, S3 − F is an open handlebody). The construction in
[323,Fox,1962a] yields such a free Seifert surface.

(A) What is the smallest genus among free Seifert surfaces of K? Call this the free genus.
Relate the free genus to other invariants of knots. Note that the free genus seems to be
arbitrarily large for genus 1 knots; consider untwisted doubles.

(B) Which knots bound an incompressible free Seifert surface? Fibered knots do. Some
knots do not [687,Lyon,1972,Proc. Amer. Math. Soc.].

(C) Trotter gives examples of nonunique free incompressible Seifert surfaces [1064,1975].
Are these examples non-unique (up to isotopy?) when pushed into B4?
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Update: (A) The free genus can be arbitrarily large for twisted doubles, [794,Moriah,1987,
Proc. Amer. Math. Soc.], and for untwisted doubles [672,Livingston,1988,Proc. Amer.
Math. Soc.].

(B) No information.

(C) No information.

Problem 1.21 (Gordon) Let L be a nontrivial link in S3 with two unknotted components
C1, C2, and linking number zero. Take the k-fold branched cover over C1.

Conjecture: The k lifts of C2 form a nontrivial link.

Remarks: If it is trivial, then there are many counterexamples to the Smith conjecture
(Problem 3.38) for Z/kZ actions [401,Gordon,1977,Quart. J. Math. Oxford Ser. (2)].

Update: True, because the Smith conjecture is true; but it follows more easily from the
equivariant sphere theorem [743,Meeks, III & Yau,1980,Ann. of Math.].

Problem 1.22 (Montesinos) Find a set of moves on links of S3 so that two links have the
same 2-fold branched covering space iff it is possible to pass from one link to the other using
this set of moves.

Update: Still open.

Problem 1.23 (Montesinos) If a knot K ⊂ S3 is amphicheiral, then the 2-fold covering
space branched over K is symmetric (has an orientation reversing diffeomorphism). Is the
converse true? (Conjecture: No.)

Update: Still open. A related question [118,Boileau, Gonzalez-Acuña, & Montesinos,1987,
Math. Ann.] was answered by Callahan [167,1994] who constructed examples of knots which
admit no non-trivial symmetries, but have Dehn surgeries which yield 3-manifolds which are
2-fold branched coverings of S3 and hence have a symmetry of order two.

Problem 1.24 (Fox & Perko) Does every simple 4-fold branched cover of a knot K have
precisely three distinct branch curves?
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Remarks: A simple 4-fold branched cover corresponds to a representation of π1(S3 − K)
onto S4 with meridians going to elements of order 2. Every orientable, closed 3-manifold is a
3-fold (irregular) branched cover of S3 over some K, and that representation of π1(S

3 −K)
onto D3 = S3 lifts to a representation onto S4 which is simple or takes meridians to elements
of order 4 [871,Perko,1975].

Update: The answer is yes [272,Edmonds & Livingston,1984,Topology Appl.].

Problem 1.25 (Cappell & Shaneson) Let Mα be an irregular P -fold dihedral cover of
a knot α. Let α0, α1, . . . , αr, r = (p − 1)/2, be the branching curves in Mα where α0 has
branching index 1. Let vi,0 = l(αi, α0).

Prove that vi,0 ≡ 2 (mod 4) if Mα is a Z/2Z-homology sphere.

Remarks: For 2-bridge knots, vi,0 ≡ 2 (mod 4) [872,Perko,1976,Invent. Math.]. Cappell
& Shaneson have shown that

∑r
i=1 vi,0 ≡ (p − 1) (mod 4) for a Z/2Z-homology sphere.

Consequently, vi,0 ≡ 2 (mod 4) if p ≡ 3 (mod 4) and if 2 generates Z∗p/{±1}. For p = 3,
the formula reduces to v1,0 ≡ 2 (mod 4) [180,Cappell & Shaneson,1975,Bull. Amer. Math.
Soc.].

Update: A proof that v1,0 ≡ 2 (mod 4) is given in [183,Cappell & Shaneson,1984].

Problem 1.26 (Murasugi) Suppose the first homology group of the 2-fold cyclic branched
cover of a knot α ⊂ S3 is Z/pZ (hence p = |∆α(−1)|), and let Mα be the irregular p-fold
dihedral cover of α.

Conjecture: If Mα is a Z-homology sphere, then
∑r
i=1 vi,0 ≡ σ(α) (mod 8) where σ(α)

is the signature of α and vi,0 is defined above.

Remarks: The conjecture holds with equality for 2-bridge knots ([450,Hartley & Murasugi,
1978,Canad. J. Math], also see [872,Perko,1976,Invent. Math.]).

Update: The conjecture is false [446,Hartley,1977]. However
∑(p−1)/2
i=1 vi,0 ≡ p−1 (mod 4)

[183,Cappell & Shaneson,1984], and σ(α) = |∆α(−1)| − 1 (mod 4) [819,Murasugi,1965,
Trans. Amer. Math. Soc.]; since |∆α(−1)| = p, it follows that the conjecture holds modulo 4.

Problem 1.27 (Goldsmith) Do there exist distinct prime knots K and K ′ in S3 all of
whose cyclic branched covers are homeomorphic?



23

Update: No, because Kojima [600,1986] has proved that for a prime knot K there is an
integer NK > 0 such that two prime knots, K and K ′, are homeomorphic if their n-fold
branched covers are the same for n > max{NK , NK′}. However see Problem 1.74.

Problem 1.28 (Goldsmith) Let M3 π→ S3 be an n-fold cyclic branched cover of S3 along
a knot K. Let A be an unknot in S3 −K. If K is a closed braid about A, then π−1(A) is a
fibered knot or link in M3.

Question: Is the converse true?

Update: The answer is yes if n is a prime power, or more generally, if M is a rational
homology sphere [271,Edmonds & Livingston,1983,Comment. Math. Helv.].

Problem 1.29 (Cappell & Shaneson) Is every closed, oriented 3-manifold the dihedral
branched covering space of a ribbon knot?

Update: Still open.

Problem 1.30 (Cappell & Shaneson) Are the classical PL and TOP knot concordance
groups the same?

Remarks: Clearly CPL → CTOP is onto. This question may be easier than the Hauptver-
mutung for B2 × R2.

Update: No by the answer to Problems 1.36 and 1.37. In fact, the kernel should be infinitely
generated.

Problem 1.31 (Y. Matsumoto) Let HA = {all knots in all homology 3-spheres which
bound PL acyclic 4-manifolds, modulo homology bordism of pairs}.

Is the natural map CPL→ HA an isomorphism?

Update: Akbulut’s example proving the Zeeman conjecture [20,Akbulut,1991b,Topology]
gives a knot K in a homology 3-sphere Σ which is not concordant to a knot in S3 via
a concordance that lies in a particular homology bordism from Σ to S3; however K is
concordant to the unknot in S3 via a different bordism (the two homology bordisms are two
different Mazur manifolds minus their 0-handles). So the problem is still open.
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Problem 1.32 (Gordon) Does the classical knot concordance group contain any nontrivial
elements of finite order other than 2?

Update: Many more elements are known of infinite order, but still none of finite order other
than two.

Problem 1.33 If K is a slice knot, is K a ribbon knot? (See Problem 4.22.)

Update: No progress.

Problem 1.34 (Casson) Find an algorithm for determining whether a knot is slice or rib-
bon .

Remarks: There is an algorithm for the (harder?) problem of determining whether a knot
is unknotted [428,Haken,1961,Acta Math.].

Update: No progress.

Problem 1.35 (Cappell & Shaneson) The µ-invariant formula of Cappell & Shaneson
[180,1975,Bull. Amer. Math. Soc.] detects non-ribbon knots. Does it detect non-slice knots
as well? Relate this to the Casson–Gordon invariant.

Update: No progress.

Problem 1.36 (L. Taylor) If a knot has Alexander polynomial equal to one, is it a slice
knot?

Remarks: Any such knot is algebraically slice, i.e., there is a basis so that the Seifert matrix
has the form ( 0

B
A
C
) (Taylor). These knots have no metacyclic covers, so the Casson–Gordon

method does not apply.

Here is a possible generalization to links. A boundary link is a link L whose components
bound disjoint imbedded surfaces F1, . . . , Fr in S3. Note that if a knot has a Seifert matrix
of the form ( 0

B
0
C

), then its Alexander polynomial is one. Hence, define a good boundary link
to be one for which there is a summand Ai ⊂ H1(Fi;Z) such that 2 dimAi = dimH1(Fi;Z)
and the intersection of every element of Ai and every other element of H1(Fj;Z) is zero for
all i, j.



25

Question. Is a good boundary link slice?

Note that a slice link is not necessarily a boundary link [1008,Smythe,1966].

Update: All Alexander polynomial one knots are topologically slice. In fact, if K is a
knot in a homology sphere which bounds a smooth contractible 4-manifold X4, then K has
Alexander polynomial one iff K bounds a locally flat 2-ball D in X with π1(X −D) = Z,
[336,Freedman & Quinn,1990; page 210].

On the other hand, all the pretzel knots in Problem 1.37 are not smoothly slice. Many
knots can be shown not smoothly slice using various gauge theoretic techniques.

Whether good boundary link are topologically slice is still open.

Problem 1.37 (Casson) (A) The knot

p

q

r

Figure 1.37.1. (p,q,r)-pretzel knot

(p = −3, q = 5, r = 7 in illustration) has Alexander polynomial 1 if p, q, r are odd
and qr+ rp + pq = −1. Is it slice?

(B) The double branched covering of this knot is the Brieskorn homology sphere Σ(|p|, |q|, |r|).
Does it bound a homology ball?

Remarks: An affirmative answer to (A) implies that Σ(p, q, r) bounds a Z/2Z-homology
ball.

If the Brieskorn sphere Σ(|2bc + 1|, |2a(b − d) + 1|, |2d(c − a) + 1|) bounds a homology
ball for some numbers a, b, c, d with ad − bc = 1, then the homology class (a, b) in some
homology S2 × S2 is representable by an imbedded S2. For example, if Σ(3, 5, 7) bounds,
then (2, 3) is representable. (See Problem 1.42.)
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Update: Fintushel & Stern have shown (Theorem 10.7 in [310,1985,Ann. of Math.]) that
none of the Σ(|p|, |q|, |r|) bound Z/2Z-acyclic 4-manifolds, so none of the pretzel knots in (A)
are slice. In fact they show that the Σ(|p|, |q|, |r|) have infinite order in ΘH

3 , the homology
bordism classes of homology 3-spheres. In [312,Fintushel & Stern,1990,J. London Math.
Soc.] they show that the collection of Σ(2, 3, 6k − 1) gives infinitely many, free, generators
of ΘH

3 , and for k even one gets such generators for the kernel of the Rohlin homomorphism
ΘH

3 → Z/2Z.

Problem 1.38 Conjecture (unlikely): The untwisted double of a knot is slice ⇔ the knot
is slice.

Update: The odds on the (smooth version of the) conjecture are improving since many
untwisted doubles are not slice, [960,Rudolph,1993,Bull. Amer. Math. Soc.] or [961,
Rudolph,1995,Invent. Math.].

Some untwisted doubles of non-slice links are also not slice. In particular, iterated un-
twisted positive doubles of the Whitehead link are never (smoothly) slice (Rudolph); this
implies that one of the simplest Casson handles is not smoothly standard (see the following
Problem 1.39).

The topological version of the conjecture fails easily because the untwisted double of any
knot K has Alexander polynomial one and is therefore topologically slice (see Problem 1.36),
whereas any K which is not algebraically slice is not topologically slice.

Problem 1.39 (Casson) Drawn below is the Whitehead link and an untwisted double of
the Whitehead link.

This construction can be iterated by replacing by or ; call the nth iterate

Wn.
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Is any Wn null-concordant?

Remarks: If so, then there exists a proper homotopy S3 × R which is not S3 × R. If not,
there exists an end of a 4-manifold, Q ∼=P S2 × S2− pt, which is fake (A. Casson). It is also
interesting to know if Wn is null-concordant in some contractible 4-manifold.

The manifold Q can be described as follows. Let X ⊂ S1 × intB2 be the continuum of
Whitehead [1110,Whitehead,1962], defined as X = ∩i>0α

i(S1 × B2), where α : S1 × B2 →
S1 ×B2 is the imbedding shown below (α should have 0-twisting about its core):

x 21S     B

α(           )S     B21 x

Regarding S2 × S2 as the union of a 0-handle B4
0 , two 2-handles B2

1 ×D
2, B2

2 ×D
2 and a

4-handle B4
3 , define a compact subset C = B4

3 ∪ cX1 ∪ cX2, where each Xi is a Whitehead
continuum constructed in intB2

i × ∂D
2 ⊂ ∂B4

3, the cocore attaching tube of the ith 2-handle,
and where Xi is coned off to the center of the 2-handle B2

i ×D
2. Then Q = S2 × S2 −C.

The open subset B2
1 × intD2 − cXi of the open 2-handle B2

i × intD2 is called a flexible
2-handle by Casson; this is the simplest such. (The others are constructed by replacing X
by a Whitehead-like continuum obtained by ramifying at each stage the original Whitehead
imbedding α.) Any such flexible 2-handle is proper homotopy equivalent, rel∂, to the stan-
dard open 2-handle B2 × intD2. One fundamental question is whether this can ever be a
diffeomorphism. The manifold Q can be regarded as the union of an open 0-handle intB4

0

and two flexible 2-handles.

The compact subset C = S2 × S2 − Q is cell-like (i.e., homotopic to a point in any
arbitrarily small neighborhood) and satisfies the cellularity criterion (i.e., Q is 1-connected
at ∞; see [737,McMillan, Jr.,1964,Ann. of Math.]). However, C is smoothly cellular (≡ the
intersection of a nested sequence of smooth 4-balls) ⇔ some Wn is null-concordant.
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Update: If Wn is constructed using only right-handed (or left-handed) clasps, then it is not
smoothly null concordant [100,Bižaca,1995,Proc. Amer. Math. Soc.].

Many flexible handles (now called Casson handles) are exotic, but it is not known if all
of them are. Note that exotic means that the Casson handle does not have a smoothly
imbedded B2 spanning the S1 × 0 in the boundary; it is possible to construct an open 2-
handle, which does have a spanning B2 but is not smoothly standard, by end-connected
summing with an exotic R4 (Gompf). A Casson handle is known to be exotic if it contains
a branch all of whose kinks (or clasps) are right handed [Bižaca, ibid.].

For a good description of Casson handles, see [422,Guillou & Marin,1986a].

Problem 1.40 (A) Let K be a torus knot. Is the genus ofK equal to the 4-ball genus of K?

Remarks: The 4-ball genus is the minimal genus of a bounding surface in B4. The
genera are equal for (2, q)-torus knots. The genus of the (p, q)-torus knot is (p−1)(q−
1)/2. Since n ∈ H2(CP2;Z) = Z is represented by an imbedded 2-sphere which is
smooth except for a cone on the (n − 1, n)-torus knot, the Remark in Problem 4.36
gives a lower bound for the 4-ball genus of the (n− 1, n)-torus knot.

(B) L. Rudolph has shown that every link in S3 is isotopic in S3 to one which bounds a
nonsingular complex analytic curve in B4 ⊂ C2. What can be said about the minimal
genus of such a curve?

Update:

(A) Yes [623,Kronheimer & Mrowka,1993,Topology]. Also, see the Update for Problem 1.4.

(B) The statement attributed to Rudolph is erroneous. In fact, Rudolph shows in [956,1983,
Topology] that every quasipositive closed braid is isotopic in S3 to one which bounds
a non-singular complex analytic curve in B4 ⊂ C2 (what Rudolph calls a transverse
C-link). The converse is open (see Problem 1.100).

There are many knots which are not quasipositive braids. The first was the figure-8
knot[959,Rudolph,1990,Math. Proc. Cambridge Philos. Soc.] using the HOMFLY
polynomial; many more were constructed that way, and more still using [Kronheimer
& Mrowka, ibid.].

Problem 1.41 (A) (Akbulut & Kirby) Let M4
K be constructed by adding a 2-handle

to B4 along a knot K with the 0 framing. Define the 0-shake genus of K to be the
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minimal genus of a smooth, imbedded surface in MK representing the generator of
H2(MK).

Does the 0-shake genus equal the 4-ball genus of K? Probably not.

Remarks: The r-shake genus of K (obvious definition) can be less than the 4-ball
genus, for r 6= 0 [15,Akbulut,1977,Math. Proc. Cambridge Philos. Soc.].

(B) (Giffen) What is the minimal genus of a smooth, imbedded surface in ∂MK representing
the generator of H2(∂MK)?

Conjecture: It equals the genus of K.

Remarks: (L. Taylor) The conjecture is true for fibered knots (even in homology
spheres); however, the conjecture fails in general for knots in homology spheres. Per-
haps it would be easier to show that the Seifert surface of K union the 2-handle is
incompressible in ∂MK . If so, or if the conjecture holds, then every knot has Property
R (Problem 1.16).

Update:

(A) Still open.

(B) The conjecture is true [355,Gabai,1987a,J. Differential Geom.]. In fact, Gabai shows
that the Gromov norm and the singular Thurston norm of the generator of H2(∂MK)
are both linear functions of genus K.

Problem 1.42 (Y. Matsumoto) Does the following link in S3 bound a smooth punctured
sphere in B4? If so, (2, 3) ∈ H2(S2 × S2;Z) is represented by a smooth S2. Can it be
represented by a torus?

Remarks: This is the simplest unsolved case one encounters in trying to represent (2, 3) ∈
H2(S2 × S2;Z) by a smooth imbedded S2. This can be done iff such a link as above, with
2+2k circles in one group and 3+2l circles in the other group oriented to give (2, 3), bounds



30 CHAPTER 1. KNOT THEORY

a smooth, imbedded punctured S2 in B4. The above is the case k = 2, l = 1. The simpler
cases are ruled out by the Murasugi–Tristram inequality

|σp|+ |ηp| ≤ µ− 1

where σp is the p-signature of the link, ηp is the nullity (≡ dim minus rank of the associated
form) and µ is the number of components of the link. For p = 2 we get |6| + |2 + 2l| ≤
|5+2k+2l−1|, which rules out the cases k ≤ l, l arbitrary. For p = 3 we get |5|+ |1+2k| ≤
|5 + 2k + 2l − 1|, ruling out k arbitrary, l = 0.

Update: The class (m,n) ∈ H2(S2 × S2;Z) can be represented by a smoothly imbedded
S2 if |m| ≤ 1 or |n| ≤ 1. Otherwise it cannot be [628,Kuga,1984,Topology]. (m,n) can be
represented by a locally flat, imbedded S2 whenever m and n are relatively prime.

Apparently the question of representing (2, 3) by a smooth T 2 is still open.

Problem 1.43 (Scharlemann) Are there knots f : S1 → S3 such that for any locally flat
concordance F : S1 × I → S3 × I the map π1(S3 − f(S1)) → π1(S3 × I − F (S1 × I)) is
injective?

Conjecture: This is true for torus knots.

Remarks: This is true for torus knots if F must be a fibered concordance.

Update: The conjecture is true [187,Casson & Gordon,1983,Invent. Math.].

Problem 1.44 (Kauffman) Does link concordance imply link homotopy? (Added in proof
April 1, 1977: Yes, Giffen and (independently) Goldsmith.)

Update: Yes, [379,Giffen,1979,Math. Scand.] and [388,Goldsmith,1979,Comment. Math.
Helv.].

The following definitions are used in the next three problems. Given a knot K in S3, an
algebraically-one strand is a way of imbedding an unknotted T = S1 ×B2 in S3, containing
K, so that K and p× ∂B2, p ∈ S1, link algebraically once. Thus K goes algebraically once
around T . There is a similar definition for algebraically-l strand.

A (k, l)-twist on K is obtained by taking some algebraically-l strand, i.e., some T , and
twisting T k full times in a right-handed direction around S1 × 0.
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K
T

Problem 1.45 (Akbulut) Conjecture: There exist a knot K and an algebraically-one
strand such that no matter what knot is tied in the strand (in T ), the new knot is not slice
in any homotopy 4-ball (with ∂ = S3).

Remarks: If the conjecture is true, there exists a knot in the boundary of a contractible
4-manifold which does not bound an imbedded PL 2 ball (see Problem 4.21). Specifically,
suppose K and T satisfy the conjecture. Then if we add a 2-handle to K (with any framing)
in ∂(S1 × B3), we get a contractible manifold W and S1 × p, p ∈ ∂B3, does not bound a
PL 2-ball. For, if there is a PL 2-ball, with singularity equal to a cone on a knot J , then K
with J tied in it is slice in a homotopy 4-ball.

Update: No progress, but the application of the conjecture to the existence of a knot has
been shown (see Update to Problem 4.21 and [20,Akbulut,1991b,Topology]).

Problem 1.46 (Akbulut & Kirby) Conjecture: Given a knot K with Arf invariant
zero, there is a (±1,±1)-twist changing K into:

(A) An algebraically slice knot (Seifert matrix concordant to zero). Very likely true.

(B) A slice or ribbon knot. Perhaps.

(C) The unknot. Surely false.

There is a better chance for the conjecture that K is concordant to a knot K ′ which, after
a (±1,±1)-twist, satisfies (A) or (B) or (C).

Update:

(A) True (Casson).
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−1

n− 1

Figure 1.46.1.

(B) and hence (C) is false (even if a concordance to K ′ is allowed) (Akbulut). For, suppose
to the contrary that (B) is true. Consider the (2, 7)-torus knot K with framing n, and
the 3-manifold M defined by surgery on K. Giving K a (±1,±1) twist amounts to
blowing up a ±1 unknot U with lk(U,K) = ±1 (see Figure 1.46.1 for an example with
geometric linking 3), which changes the framing on K to n ± 1. This two component
link describes a 4-manifold S4 with ∂W = M and intersection form (±1

±1
±1
n±1

). If we pick
n so that n ± 1 = 0, then because K is now slice, there is a smoothly imbedded S2 in
W 4 with self intersection zero; surger it to see that M bounds an acyclic 4-manifoldX4.
But M also is ∓1 surgery on K which bounds a 4-manifold with definite intersection
form Γ16 (if n = +1) or 2E8 ⊕ (0

1
1
0
) (if n = −1); this contradicts the results in [250,

Donaldson,1987b,J. Differential Geom.].

Problem 1.47 (Casson) Given any Arf invariant zero knot K, is it possible to change K
to the unknot by a series of (1,±1)-twists on K?

Remarks: (Casson) Yes, if K is ribbon or slice (since we can connect sum with a ribbon
knot and get a ribbon knot). Any K can be reduced to a connected sum of granny knots.
If the granny knot could be changed to the unknot with 17 (1,±1)-twists, then there exists
an even, signature 16, β2 = 18 closed 4-manifold (in 17(−CP2)#2CP2, try to represent
(1, 1, . . . , 1, 3, 3) by a smooth imbedded S2; in #2CP2, (3, 3) is represented by a PL sphere
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with a singularity equal to a cone on the granny knot, and the 17 −CP2’s allow 17 (1,±1)–
twists to unknot the granny knot).

Update: No progress, except that the 4-manifold above does not exist so one cannot change
the granny knot to the unknot as asked above. This problem seems to be outmoded.

Problem 1.48 (J. Levine) A general question is what groups π are fundamental groups
of the complement of some knotted S2 in S4?

Recall that a group π has weight 1 if it is normally generated by one element, and
deficiency one if it has a presentation {x1, . . . , xn, t : R1, . . . ,Rn} with one more generator
than relation.

(A) Given π such that H1(π) = Z, π has weight one and deficiency one, then π is the group
of an S2 in a homotopy 4-sphere [571,Kervaire,1965,Bull. Soc. Math. France]. Which
of these are realizable by knots in S4? π is realizable if the induced presentation of the
trivial group defined by setting t = 1 is trivializable by Andrews–Curtis moves.

(B) Let Λ = Z[t, t−1] and let the Λ-module A of an S2 → S4 be π′/π′′ with the induced
action of π/π′ = Z. Which Λ-modules are realizable? If A is Z-torsion free (implied
by deficiency one) the answer is known since there are enough deficiency one π to get
all such A’s.

Update: Questions 1 and 2 have not been answered, but the status of fundamental groups
of knotted 2-spheres in S4 as of 1988 is given in [485,Hillman,1989] with an update to 1993
in [486,Hillman,1994; Chap. X].

Problem 1.49 (Lomonaco) Does there exist a smooth, prime S2 in S4 such that the defi-
ciency of the fundamental group of its complement is < 0?

Remarks: The deficiency is always ≤ 1 because the complement is a homology S1. E.
Artin [46,1925,Abh. Math. Sem. Univ. Hamburg] constructed knots of deficiency one
by spinning, and Fox constructed a knot of deficiency 0 in [323,1962a]. J. Levine and C.
Giffen have recently found many nonprime knots of arbitrarily large negative deficiency, by
connect-summing arbitrarily many knots of deficiency zero.

Update: Still open.

Problem 1.50 (Gordon) Can a branched cyclic cover of a (locally flat) knot Sn → Sn+2

ever be a K(π, 1), for n ≥ 2?
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Update: No progress.

Problem 1.51 (Kawauchi) Suppose a knotted 2-sphere Σ2 in S4 is of Dehn’s type (i.e.,
the homomorphism π2(∂N)→ π2(S4 − Σ2) is trivial where N is a tubular neighborhood of
Σ2).

Questions: Is Σ2 algebraically unknotted (i.e., is S4−Σ2 ' S1)? Geometrically unknot-
ted?

Remarks: The infinite cyclic cover of S4 − Σ2 is acyclic; if in addition π3(S4 − Σ2) = 0 is
satisfied, then Σ2 is algebraically unknotted [567,Kawauchi,1986,Osaka J. Math.]. If there
exists an algebraically knotted Σ2 of Dehn’s type, it would have infinitely many ends.

Update: A knotted n-sphere of Dehn’s type must be algebraically unknotted by a result of
Swarup [1025,1975,J. Pure Appl. Algebra], together with the fact that finitely presentable
groups are accessible [258,Dunwoody,1985,Invent. Math.], (for a simpler proof, see [1029,
Swarup,1993]). It follows that the knot is unknotted, except that when n = 2, it unknots
topologically; whether it unknots smoothly is still unknown.

Problem 1.52 (Kauffman) Conjecture: If K is a slice knot in S3 and F 2 is an ori-
entable Seifert surface for K, then there exists a simple closed curve α in F such that

• α is null (meaning that the linking number of α with a parallel in F is zero and 0 6=
α ∈ H1(F ;Z)),

• the Arf invariant of α is zero.

If true, can one then find a null α which is slice?

Update: Still open if slice means smoothly slice. However, Freedman [330,1984] showed
that any knot with Alexander polynomial one has a topological slice disk which is locally
flat. So the untwisted double of the figure-8 knot (or any other knot with non-trivial Arf
invariant) provides a counterexample in the topological category.

Also, if K has a topological slice disk which is locally flat, genus(F ) = 1 and |∆K(−1)| 6=
1, then there is a null α such that some interesting bordism invariants (depending on
|∆K(−1)|) of α must vanish [384,Gilmer & Livingston,1992,Math. Proc. Cambridge Philos.
Soc.] and [382,Gilmer,1993,Comment. Math. Helv.].
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Problem 1.53 Does mutation preserve the concordance type of a knot in S3? (Mutation is
the operation of a knot which removes a tangle, twists it 180◦, and glues it back in).

Update: No [568,Kearton,1989,Proc. Amer. Math. Soc.]. But if the knot is oriented and
the mutation is the one (of three types) which preserves orientation, then the problem is still
open.

Problem 1.54 (Hillman) When is the result of surgery on a knot in S4 aspherical?

Remarks: The knot group must be an orientable Poincaré duality group of formal dimension
four [482,Hillman,1980,Houston J. Math.], but is this condition sufficient?

Update: The closed 4-manifold M(K) obtained by surgery on a 2-knot K is aspherical if
and only if the knot group πK is a PD+

4 -group (an orientable Poincaré duality group of
dimension 4) and the image of the orientation class of M(K) in H4(πK;Z) is nonzero. (See
Theorem II.5 of [486,Hillman,1994].) The latter condition holds if πK ′ 6= πK ′′ (i.e., if the
infinite cyclic covering space of M(K) is not homologically S3), by the Corollary to Theorem
III.8 of [485,Hillman,1989].

The localization argument shows that if πK has a large enough torsion free abelian normal
subgroup then M(K) is aspherical. (See Theorems III.3 and III.4 of [ibid.]). This argument
has since been extended to elementary amenable normal subgroups with restricted torsion.
(See Chapter X of [486,Hillman,1994].) Using L2-cohomology, Eckmann has shown that if
πK is amenable thenM(K) is aspherical if and only if πK has one end andH2(πK;Z[πK]) =
0 [266,Eckmann,1993].

Problem 1.55 (A) If a smooth 2-sphere K in S4 has group π1(S
4 −K) = Z (this implies

that S4 −K ' S1), is it smoothly unknotted?

Remarks: K is unknotted in the topological category [329,Freedman,1982,J. Differ-
ential Geom.]. Also, see Problem 4.41.

(B) Let L be a link in S4 with unknotted components and let π1(S4 − L) be free on a set of
meridians. Is L trivial (topologically or smoothly)?

Remarks: G. A. Swarup [1026,1977,J. Pure Appl. Algebra] has shown that the
exterior S4 − L has the right homotopy type rel boundary. However, the homotopy
type rel boundary of a knot exterior does not in general determine the homeomorphism
type of the knot exterior [878,Plotnick,1983,Math. Zeit.] .

(C) When is a 2-link splittable? In particular, is it sufficient that the group be a free product
with each factor normally generated by a meridian?
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Update:

(A) No progress.

(B) If L is a 2-link whose link groups is freely generated by meridians, then there is a
topological concordance from L to the unlink whose exterior is an s-cobordism rel
boundary [487,Hillman,1995].

(C) No progress.

Problem 1.56 Are all 2-links slice?

Remarks: All 2-knots are slice [571,Kervaire,1965,Bull. Soc. Math. France]. All boundary
links are slice ([Kervaire, ibid.], [425,Gutierrez,1973,Bull. Amer. Math. Soc.], [182,Cappell
& Shaneson,1980,Comment. Math. Helv.]), so the problem is to show that every 2-link is
concordant to a boundary link. Note that L is a boundary link iff there exists a homomor-
phism ϕ : π1(S4 − L) → Fµ (= free group on number of components) taking meridians to
generators [Gutierrez, ibid.]. More generally, it is sufficient to find ϕ : π1(S4−L)→ P where
the normal closure of image ϕ is P , P is a higher dimensional µ-component link group, and
H3(P ;Z/2Z) ∼= H4(P ;Z) = 0, [211,Cochran,1984d,Trans. Amer. Math. Soc.].

An easier problem is: does the Z/2Z invariant of Sato–Levine [963,Sato,1984,Topology
Appl.] vanish for all 2-links? It vanishes for certain classes of 2-component links, e.g. when
one of the components is unknotted [210,Cochran,1984c,Topology Appl.].

Update: This problem is still wide open, even for any even-dimensional link. Some invari-
ants have been found, but they have all turned out to be zero. Le Dimet [643,1988,Mém.
Soc. Math. de France (N.S.)] has shown the problem to be equivalent to a hard problem in
homotopy theory.

The Sato–Levine invariant above has been shown to always be zero [861,Orr,1987,Com-
ment. Math. Helv.].

Problem 1.57 (A) Is the center of a 2-knot group finitely generated?

Remarks: The only known centers are Z, Z⊕Z/2Z, and Z⊕Z, and they are realized
by twist spun trefoil knots, [483,Hillman,1981].

(B) Is the center of the group of a 2-link with more than one component trivial?

Remarks: The argument of Hausmann and Kervaire may be readily modified to
show that any finitely generated abelian group is the center of the group of some µ-
component n-link for each µ ≥ 1, n ≥ 2. In the classical case, n = 1, the center must
be 0,Z or Z⊕ Z.
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Update: No progress has been made except there is now a 2-knot whose center is Z/2Z
[1134,Yoshikawa,1982,Bull. Austral. Math. Soc.].

NEW PROBLEMS

Problem 1.58 (X.-S. Lin) Suppose that oriented knots K+ and K− differ at exactly one
crossing at which K+ is positive and K− is negative. If K+ = K−, does it follow that K+

equals

K1 K2

where either K1 or K2 could be the unknot?

Remarks: This is known if K± is the unknot (this follows from the technique in the proof of
Theorem 1.4 in [972,Scharlemann & Thompson,1989,Comment. Math. Helv.]). IfK+ = K−
by an orientation reversing homeomorphism, then the answer is no (for example, consider
the pretzel knots K± = (3,±1,−3); one is the mirror image of the other, so they are equal
by an orientation reversing homeomorphism (see the old Problem 1.37(A) for a picture of
the (p, q, r)-pretzel knot)).

Problem 1.59 (Przytycki) (i) The local change in an oriented link diagram which re-

places by k positive half-twists
k

: : : is called a tk-move.

(ii) For k even, the local change replacing by
k

: : : is called a t̄k-move.

(iii) For an unoriented diagram, replacing by k right-handed half-twists
k

: : : ,
is called a k-move.

We say that two oriented links L1 and L2 are ti (respectively t̄j or ti, t̄j)-equivalent if
there is a sequence of t±1

i (respectively t̄±1
j or t±1

i , t̄±1
j )-moves and isotopies which converts

L1 to L2.

We say that two unoriented links L1 and L2 are k − equivalent if there is a sequence of
k±1-moves and isotopies which converts L1 to L2.
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k-moves were probably considered explicitly for the first time by Kinoshita [575,Ki-
noshita,1957,Osaka Math. J.].

(1) Conjecture: (Montesinos & Nakanishi) Any link is 3-equivalent to a trivial link.

Remarks: Nakanishi first considered the conjecture in 1981. Earlier Montesinos ana-
lyzed 3-moves in relation to 3-fold dihedral branch coverings and asked a related but
different question. Conjecture (1) easily holds for algebraic links (in the Conway sense)
[225,Conway,1969]. Settling the conjecture for a link with braid index at most 5 (and
bridge index at most 3) is reduced to a finite number of cases because Coxeter [228,
Coxeter,1957] showed that the quotient of the braid group Bn/ < σ3

1 > is finite for
n ≤ 5.

According to Nakanishi (1994) the smallest known obstruction to Conjecture (1) is
the 2-parallel of the Borromean rings (notice that it is a 6-string braid), Figure 1.59.1

Figure 1.59.1.

(2) Conjecture: Any 2-tangle can be reduced, using 3-moves, to one of the four 2-tangles
of Figure 1.59.2, where additional trivial components are allowed in the tangles, [901,
Przytycki,1994a].

+L -L S 0 S 8SS

Figure 1.59.2.
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Remarks: Conjecture (2) holds for algebraic 2-tangles.

(3) Conjecture:

(a) (Nakanishi 79) Any knot is 4-equivalent to the unknot.

(b) (Kawauchi 85) If two links are link-homotopic then they are 4-equivalent.

Remarks: Conjecture 3(a) holds for algebraic (in the Conway sense) knots and 3-
braid knots. The smallest known unsolved case of Conjecture 3(a) is a 2-cable of
the trefoil knot (see Figure 1.59.3), which is a 4-braid knot (Nakanishi 1994). See
[830,Nakanishi,1984,Sūrikaisekikenkyūsho Kōkyūroku], [833,Nakanishi & Suzuki,1987,
Osaka J. Math.], [809,Morton,1988], [894,Przytycki,1988].

Figure 1.59.3.

(4) Conjecture: (Przytycki 86) Any oriented link is t3, t̄4 equivalent to a trivial link.

Remarks: Conjecture (4) holds for algebraic (in the Conway sense) links and 3-
braid links (for 3-bridge links and links with the braid index no more than 5 the
conjecture should follow from the Coxeter theorem (see Remark to Conjecture (1))).
Conjecture (4) also holds for links with matched diagrams [896,Przytycki,1990,Math.
Proc. Cambridge Philos. Soc.] (see Problem 1.60). Also see [809,Morton,1988], [894,
Przytycki,1988].

(5) Conjecture: (Przytycki 87). Any oriented link is t3, t̄6 equivalent to a trivial link.

Remarks: Conjecture (5) holds for closed 3-braids, [900,Przytycki,1993].

Consider the following (Figure 1.59.4) (n, k)-move which changes n horizontal twists
to k vertical twists.
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(n, k)−move

k half-twists

n half-twists

Figure 1.59.4.

(6) Conjecture: (Nakanishi, Harikae 92) Any link can be reduced to an unlink by (2,2)
moves.

Remarks: Conjecture (6) holds for algebraic links (in the Conway sense) [445,Harikae
& Uchida,1993], [831,Nakanishi,1992,Sūrikaisekikenkyūsho Kōkyūroku], [832,Nakanishi,
1994,J. Knot Theory Ramifications], [901,Przytycki,1994a].

(7) Question: (Przytycki 95) Can any link be reduced by (2,3) moves to an unlink?

Remarks: The answer is yes for algebraic links (in the Conway sense).

Remarks to parts 1-7: A k-move on a link preserves H1(M
(2)
L ;Z/kZ), where M

(n)
L is the

n-fold branched cover of S3 with branching set the link (thus different trivial links are not

k-equivalent); similarly, a (k, n)-move preserves H1(M
(2)
L ;Z/(kn+ 1)Z) and t3 and t̄4 moves

preserve H1(M
(3)
L ;Z/2Z) [894,Przytycki,1988], [901,Przytycki,1994a].

If tk = (−1)k and t 6= −1, then the tk move changes the Jones polynomial by±ik; if t2k = 1
and t 6= −1, then the Jones polynomial is preserved by a t̄2k move; (2, 2) moves preserve the
Kauffman polynomial of unoriented framed links up to a factor ±1 at (a, x) = (1, 2cos(2π

5
))

[894,Przytycki,1988]. Any 2k + 1 move is a combination of two (2, k)-moves (for example a
5-move is a combination of (2, 2)-moves (see Figure 1.59.5), but not vice versa [445,Harikae
& Uchida,1993], [901,Przytycki,1994a]).
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isotopy

isotopy

Figure 1.59.5.

Problem 1.60 (Przytycki) We say that an oriented diagram D is a matched diagram if
one can pair up the crossings in D so that each pair looks like one of those in Figure 1.60.1
(notice the antiparallel orientation of a clasp).

Figure 1.60.1.

(1) Conjecture: (Przytycki 87)

(a) There are oriented knots without a matched diagram.

(b) Any oriented link is t3-equivalent to a link with matched diagram.

Remarks: Matched diagram were first considered in [890,Przytycka & Przytycki,
1987], and their introduction was motivated by the proof [539,Jaeger,1988,Proc. Amer.
Math. Soc.] that computation of the skein (Homflypt) polynomial is NP-hard. A simi-
lar concept was considered before by Conway who constructed knots which probably do
not possess a matched diagram (see [40,Anstee, Przytycki, & Rolfsen,1989,Topology
Appl.], [890,Przytycka & Przytycki,1987], [892,Przytycka & Przytycki,1993]).
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Consider the map Ψ from matched oriented diagrams to unoriented diagrams obtained by
reducing each clasp to a single crossing.

(2) Conjecture: (Przytycka & Przytycki 93) Consider oriented links up to t3 moves
and up to change of orientation of each split component of the link; then Ψ descends
to a bijection (onto unoriented links).

Remarks: This conjecture is stronger than Conjecture 1(b). References: [892,Przy-
tycka & Przytycki,1993], [900,Przytycki,1993].

Problem 1.61 Find an invariant that distinguishes an oriented knot from its reverse (same
knot with opposite orientation). Is a random knot irreversible?

Remarks: It is possible to distinguish knots from their reverses by showing that there
is no automorphism of the knot group which inverts the meridian and the longitude, as it
would have to if there was an isotopy from a knot to its reverse [1063,Trotter,1964,Topology].
Even more, there are knots which are not concordant to their reverses ([670,Livingston,1983,
Quart. J. Math. Oxford Ser. (2)] using a refinement of the Casson–Gordon techniques in
[381,Gilmer,1983,Quart. J. Math. Oxford Ser. (2)]). Vassiliev invariants which are derived
from Lie algebras will not distinguish the reverse of a knot. It is now known [1079,Vogel,
1995] that there are weight systems for Vassiliev invariants which are not derived from the
classical Lie algebras, but these do not yet distinguish knots any better (see Problem 1.89).

Although there is no single invariant for distinguishing reverses, in practice it seems
that there are algebraic means available to deal with any specific example (see e.g. [448,
Hartley,1983,Topology]). Furthermore, there are geometric methods: the SnapPea program
will usually decide if a knot complement is hyperbolic, and if it is, a symmetries program
will decide if there is an automorphism of the knot group which reverses the longitude; if
SnapPea doesn’t work there are slower algorithms based on the fact that the knot complement
is Haken.

Problem 1.62 (Jones & Przytycki) A Lissajous knot K is a knot in R3 given by the
parametric equations

x = cos(ηxt+ φx)

y = cos(ηyt+ φy)

z = cos(ηzt)

for integers ηx, ηy, ηz.

Question: Which knots are Lissajous?
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Remarks: The crossing number of a Lissajous knot projected onto the xy-plane is 2ηxηy−
ηx−ηy. The Jones polynomial J satisfies JLissajous(i) = 1 which implies that the Arf invariant
of the knot is 0. Also, the Alexander polynomial of a Lissajous knot is a square modulo 2
(note that it follows from this that the Arf invariant is zero, and that, for example, the 85

knot is not Lissajous).

If the integers ηx, ηy, ηz, are all odd, then K is strongly positively amphicheiral; it follows
that the Alexander polynomial is a square [449,Hartley & Kawauchi,1979,Math. Ann.], and
more generally that the Alexander module over the ring Q[t±1] is a double (i.e. A ⊕ A)
[ibid.]. Furthermore, strongly positively amphicheiral implies that K is algebraically slice
[673,Long,1983].

If one of the η’s is even, then K has period 2 [111,Bogle, Hearst, Jones, & Stoilov,1994,
J. Knot Theory Ramifications]. Also (Przytycki), there is an axis for K and its linking with
K is ±1. It follows that when ηx = 2, the Alexander polynomial of a Lissajous knot is
congruent to 1 modulo 2.

These two cases together imply that no torus knot is Lissajous. The simplest knot
with Arf invariant = 0 which is not Lissajous is 810 because it is not strongly positively
amphicheiral nor period 2. But 75, 83 and 86 are prime and may or may not be Lissajous.

Conjecture: Turks head knots, (e.g. the closure of the 3-string braid (s1s̄2)2k+1), are
not Lissajous. Observe that they are strongly positively amphicheiral.

One can define a racketball knot (or billiard knot) as the trajectory inside a cube of a
ball which leaves a wall at rational angles with respect to the natural frame, and travels in
a straight line except for reflecting perfectly off the walls; generically it will miss the corners
and edges, and will form a knot. These knots are precisely the same as the Lissajous knots.

It is not clear how to generalize Lissajous knots, but one can generalize racketball knots
by changing the shape of the room.

Problem 1.63 Let C(n) be the number of prime knots K in S3 for which the crossing
number c(K) equals n. Similarly, let U(n) (respectively T (n)) be the number of prime knots
K for which the unknotting number u(K) equals n (respectively, the tunnel number t(K)
equals n).

Question: What is the asymptotic behavior of C(n)?, of U(n)?, of T (n)?, or of ratios
of these functions such as C(n)/U(n)?

Remarks: The known values of C(n) are:
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n 3 4 5 6 7 8 9 10 11 12 13
C(n) 1 1 2 3 7 21 49 165 552 2176 9988

Ernst & Sumners, counting 2-bridge knots of n crossings [284,Ernst & Sumners,1987,
Math. Proc. Cambridge Philos. Soc.], have shown that the number of knots (the mirror
image counted, if the knot is different) is at least (2n−2 − 1)/3 for n ≥ 4, and Welsh used
this inequality in [1106,Welsh,1992] to show that:

2.68 ≤ lim inf
n→∞

C(n)1/n

and also obtained the following inequalities for the number of links (L(n)) and for the number
of alternating links (A(n)) of crossing number n.

4 ≤ lim inf
n→∞

L(n)1/n ≤ lim sup
n→∞

L(n)1/n ≤
27

2

4 ≤ lim inf
n→∞

A(n)1/n ≤ lim sup
n→∞

A(n)1/n ≤
27

4

It is not known if any of the limits above exist. It would follow from the following
conjectures by Welsh: Both C(n) and L(n) are supermultiplicative functions, that is,

C(m+ n) ≥ C(m)C(n)

L(m+ n) ≥ L(m)L(n)

Problem 1.64 (de Souza) To move from one projection of a knotK in S3 to another using
Reidemeister moves, one must in general pass through projections with more crossings. If
K is an n-crossing knot, let ψK be the minimum integer such that any two projections of K
with n crossings can be connected by a Reidemeister path through knots of crossing number
≤ ψK. Then let ψ(n) be the maximum of ψK taken over all knots with crossing number n.

Question: Is ψ(n) bounded by a computable function? Is ψ(n) bounded by a polynomial
function in n?

Remarks: A positive solution would imply the validation of some heuristic methods for
computing knot invariants.

Observe that the recent proof of the Tait Flyping Conjecture by Menasco & Thistleth-
waite [750,1993,Ann. of Math.] implies that one can pass between two minimal alternating
projections of an alternating knot by using flypes on tangles, without ever increasing the
number of crossings.
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Problem 1.65 Is the crossing number c(K) of a knot K additive with respect to connected
sum, that is, is the equality c(K1#K2) = c(K1) + c(K2) true?

Remarks: Murasugi has shown the conjecture to be valid for alternating knots as a corollary
of his proof the Tait conjecture that reduced alternating projections are minimal (also proved
by Kauffman [563,1987,Topology], [564,1988,Amer. Math. Monthly] and Thistlethwaite
[1043,1987,Topology] (all independently)). In fact, the proof is valid for a larger class of
knots called adequate knots.

Problem 1.66 (de Souza) In his first memoir On Knots Tait constructed (he thought)
amphicheiral knots of every possible even crossing number. He proposed a few forms (and
their connected sums) to fill in series of even numbers.

His arguments on the computation of the crossing numbers of the resulting knots were
inconclusive for several reasons, one being his assumption that reduced alternating knot
projections are always minimal, a theorem that was proved more than a century later by
Menasco & Thistlethwaite, [750,1993,Ann. of Math.].

He also tried to prove that every alternating amphicheiral knot has even crossing number,
a question that was settled by Murasugi [820,1987,Topology], as a byproduct of his proof
of the Tait conjecture that reduced alternating projections are minimal (also proved by
Kauffman [563,1987,Topology], [564,1988,Amer. Math. Monthly] and Thistlethwaite [1043,
1987,Topology] (all independently)).

Apparently Tait thought that all even crossing, amphicheiral, prime knots were alter-
nating, but in 1983 van Buskirk [166,Buskirk,1983,Rocky Mountain J. Math.] found a
14-crossing prime, amphicheiral non-alternating knot.

Tait also conjectured that if a knotK is amphicheiral, then its minimal crossing projection
has an even number of crossings, [1030,Tait,6 77,Trans. Royal Soc. Edinburgh; Section 13].
But this conjecture has been disproved recently by Flapan, Liang & Mislow [319,1995] who
showed that the 2 component satellite link 92

61 is amphicheiral as an unoriented link (see
Figure 1.66.1) and, furthermore, constructed a positively amphicheiral link with minimal
crossing number 11 (see Figure 1.66.2), and also by Thistlethwaite, pending independent
verification of the knot tables (currently being done by Hoste), with a 15-crossing knot (see
Figure 1.66.3 and Figure 1.66.4 to see the amphicheirality).
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Figure 1.66.1. The link 92
61

Figure 1.66.2.

Figure 1.66.3. Thistlethwaite’s amphicheiral 15-crossing knot
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Figure 1.66.4. 16-crossing projection of the same knot, showing amphicheirality

The following questions are still unknown:

(A) Question: Are there amphicheiral knots of every crossing ≥ 15 ?

Remarks: The total number of amphicheiral knots is very small compared to the
number of knots.

n 3 4 5 6 7 8 9 10 11 12 13
Knots 1 1 2 3 7 21 49 165 552 2176 9988

Amphicheirals 0 1 0 1 0 5 0 13 0 58 0

(B) Question: Are there (prime, alternating) amphicheiral knots with every possible even
crossing number?

Problem 1.67 Is the crossing number of a satellite knot bigger than that of its companion?

Remarks: Surely the answer is yes, so the problem indicates the difficulties of proving
statements about the crossing number.

Problem 1.68 Let c(K) be the crossing number of a knot K in S3, and let the asymptotic
crossing number of K, AC(K), be defined by

AC(K) = inf{c(Kd)/d
2}

where the infimum is taken over all satellitesKd of homological degree d and all d = 1, 2, 3, . . ..

Conjecture: AC(K) = c(K)
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Remarks: Obviously AC(K) ≤ c(K) and Freedman & He [333,1991,Ann. of Math.] show
that 2(genus(K))− 1 ≤ AC(K). This question is relevant to energy estimates in magneto-
hydrodynamics [ibid.]. Note that if dK is d planar parallel copies of K, then c(dK) ≥ d2c(K)
for adequate knots K (and links) ([656,Lickorish & Thistlethwaite,1988,Comment. Math.
Helv.] and [1044,Thistlethwaite,1988,Invent. Math.]).

Problem 1.69 (de Souza) (A) Does the connected sum of n knots have unknotting num-
ber at least n?

Remarks: It is not even known that the connected sum of n knots has unknotting
number > 2 (but unknotting number one knots are prime [969,Scharlemann,1985b,
Invent. Math.]). A yes answer to (A) would follow from a yes answer to the real
question:

(B) Is the unknotting number additive under connected sum, that is, does the equality
u(K1#K2) = u(K1) + u(K2) hold?

(C) (Boileau) Is the unknotting number of a link invariant under the mutation: take a
tangle in a disk with 4 endpoints and rotate it by π.

Remarks: If so, then the unknotting number of a link is additive.

The unknotting numbers (even though very easy to define) are hard to compute. The
unknotting numbers of most knots up to 9 crossings are known. The core of the list has
been computed by Y. Nakanishi in [829,1981,Math. Sem. Notes Kobe Univ.] and a few
others in [560,Kanenobu & Murakami,1986,Proc. of the AMS], [592,Kobayashi,1989,Kobe
J. Math.], [653,Lickorish,1985,Contemp. Math.] and unpublished work by J. R. Rickard, as
marked in the footnotes.
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Unknotting Numbers

u(31) = 1 u(88) = 2∗ u(98) = 2∗ u(929) = 1
u(41) = 1 u(89) = 1 u(99) = 3 u(930) = 1
u(51) = 2 u(810) = 1 or 2 u(910) = 2 or 3 u(931) = 2∗

u(52) = 1 u(811) = 1 u(911) = 2 u(932) = 1 or 2
u(61) = 1 u(812) = 2∗ u(912) = 1 u(933) = 1
u(62) = 1 u(813) = 1 u(913) = 2 or 3 u(934) = 1
u(63) = 1 u(814) = 1 u(914) = 1 u(935) = 2 or 3
u(71) = 3 u(815) = 2 u(915) = 2∗ u(936) = 2
u(72) = 1 u(816) = 2§ u(916) = 3 u(937) = 2
u(73) = 2 u(817) = 1 u(917) = 2∗ u(938) = 2 or 3
u(74) = 2† u(818) = 2 u(918) = 2 u(939) = 1
u(75) = 2 u(819) = 3 u(919) = 1 u(940) = 2
u(76) = 1 u(820) = 1 u(920) = 2 u(941) = 2
u(77) = 1 u(821) = 1 u(921) = 1 u(942) = 1
u(81) = 1 u(91) = 4 u(922) = 1 u(943) = 2
u(82) = 2 u(92) = 1 u(923) = 2 u(944) = 1
u(83) = 2∗ u(93) = 3 u(924) = 1 u(945) = 1
u(84) = 2∗ u(94) = 2 u(925) = 2‡ u(946) = 2
u(85) = 2 u(95) = 2∗ u(926) = 1 u(947) = 2
u(86) = 2∗ u(96) = 3 u(927) = 1 u(948) = 2
u(87) = 1 u(97) = 2 u(928) = 1 u(949) = 2 or 3

†Computed in [653,Lickorish,1985,Contemp. Math.].
∗Computed in [560,Kanenobu & Murakami,1986,Proc. of the AMS].
‡Computed in [592,Kobayashi,1989,Kobe J. Math.].
§Computed by J. R. Rickard, but never published.

According to Lickorish, (the only known eye witness) the method used by Rickard (an
extension of previous work by Lickorish [653,1985,Contemp. Math.]) consisted of analysing
the linking form for the first homology of the double branched cover of a knot when there
is more than one homology generator. This method worked for: 74, 88, 816, 915, 917 and 931.
For most of his knots there is an independent (and published) confirmation of his results
[560,Kanenobu & Murakami,1986,Proc. of the AMS], but for the knot 816 Rickard’s is the
only known (and unfortunately unpublished) solution.

Here are the simplest knots whose unknotting numbers are unknown:
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810 816 910

913 932 938

935 according to Alexander–Briggs 935 with its period 3

949 according to Alexander–Briggs 949 with its period 3
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Problem 1.70 (A) Conjecture: The tunnel number of the connected sum of two knots is
at least equal to the larger of the tunnel numbers of the two knots.

Remarks: The tunnel number t(K) of a knot K in S3 is the minimal number of arcs
which must be added to the knot, forming a graph with three edges at a vertex, so
that the complement in S3 is a handlebody (whose boundary will then be a minimal
Heegaard splitting of the knot complement). This graph is the simplest graph which
(allowing edges to slide over edges) can be moved into a plane, yet contains the knot.
This construction amounts to the same thing as boring holes in the complement of K,
whence the name tunnel.

T. Kobayashi [594,1994,J. Knot Theory Ramifications] following K. Morimoto [798,
1995] proved that for any n, there exist knots K1 and K2 for which

t(K1#K2) ≤ t(K1) + t(K2)− n.

Moriah & Rubinstein [796,1993] have shown that there exist two knots for which

t(K1#K2) = t(K1) + t(K2) + 1

(the most it could be); also [800,Morimoto, Sakuma, & Yokota,1994]. H.-Z. Kowng
[615,1994] showed that

t(K1) + t(K2) ≤ 3(t(K1#K2) + 1).

(B) Suppose K is a connected sum of n non-trivial knots. Is it true that t(K) ≥ n?

(C) More generally, how does the Heegaard genus behave when two 3-manifolds with bound-
ary are glued together along an annulus?

Problem 1.71 (Adams) If a knot or link in S3 is tunnel number one, then classify the
possible tunnels up to isotopy.

Remarks: Every torus knot has tunnel number one, and the tunnels have been classified
[123,Boileau, Rost, & Zieschang,1988,Math. Ann.]. Most satellite knots are not tunnel num-
ber one, but for those that are, the tunnels have been classified [799,Morimoto & Sakuma,
1991,Math. Ann.]. The problem is wide open for the remaining knots, the hyperbolic knots,
except that the Heegaard splittings of the figure-8 knot complement are classified [469,Heath,
1995], and genus two Heegaard splittings of the 52 knot complement are the four well-known
ones (Heath).

The link in Figure 1.71.1 is tunnel number one, and has two tunnels, as drawn [7,Adams,
1995]. This has been extended to a classification of the tunnels for 2-bridge links (not knots)
in [8,Adams & Reid,1994].
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Figure 1.71.1.

Problem 1.72 (Adams) One can extend the notion of tunnel number for knots and links
in S3 to an arbitrary, orientable, 3-manifold M with boundary as follows: let t(M) be the
minimum number of properly imbedded, smooth, (thickened) arcs in M such that their
complement is a handlebody. Note that this is equivalent to asking for a handlebody de-
composition of M with a minimal number of 2-handles (whose cocores form the arcs), and
this is the analogue for the case when ∂(M) 6= ∅ to the question of finding a minimal genus
Heegaard splitting of a closed, orientable 3-manifold.

A tunnel belonging to a minimal set should be called an unknotting tunnel.

(A) Now let M be hyperbolic with one cusp. Then M can be thought of as the interior of
a compact 3-manifold M ′ such that ∂M ′ = T 2, and define t(M) to be t(M ′). Suppose
that t(M) = 1. Must every unknotting tunnel be isotopic to a geodesic with both ends
running out the cusp?

(B) Is there an upper bound, independent of M , such that the length of any unknotting
tunnel is less than the bound?

Remarks: For a tunnel number one, 2-cusped hyperbolic 3-manifold, any unknotting
tunnel must be isotopic to a geodesic with each end running out a cusp, such that
the length of the tunnel is bounded by ln(4) [7,Adams,1995]. Of course, the length
of a geodesic running out cusps is infinite, so one chooses disjoint cusps, measures the
length of the geodesic outside the cusps, and then minimizes over disjoint cusps.

(C) In general, is a minimal set of unknotting tunnels isotopic to a set of geodesics when
M is hyperbolic?

Problem 1.73 (Bleiler) Let L be a link in a 3-manifold M with link exterior X (= M
minus an open disk bundle over L). L is said to have a (g, b)-presentation if π1(X) has a
presentation with g generators and b meridional generators.

Following Doll [246,1992,Math. Ann.], L is said to have a (g, b)-decomposition, or al-
ternatively, to be in b bridge position with respect to a Heegaard surface F of genus g for
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M , if L intersects each component of M − F in b trivial arcs. Obviously, if L has a (g, b)-
decomposition, then it has a (g, b)-presentation.

Meridional Generator Conjecture: If a link L has a (g, b)-presentation, then it has
a (g, b)-decomposition.

Remarks: Cappell & Shaneson’s old Problem 1.11 is the special case of this conjecture for
(g, b) = (0, 2) or (0, n) (still unsolved, but see the Update for progress).

This discussion leads to the definition of the genus g bridge number of L in M which
is the minimal b for a (g, b)-decomposition (genus 0 bridge number is the classical bridge
number). Similarly, one can define the bridge b genus of the pair (M,L) to be the minimal
genus Heegaard splitting of M for which L has bridge number b. It is easy to show that

tunnel number (L) ≤ 1-bridge genus (M,L) ≤ tunnel number (L) + 1.

The examples of tunnel number one knots with super-additive tunnel number [800,Morimoto,
Sakuma, & Yokota,1994] (see Problem 1.70 (A)) are examples of knots where the tunnel
number and the 1-bridge genus are different.

Problem 1.74 Given a prime knot K, is it necessary to know all of its n-fold branched
covers in order to distinguish it from all other knots?

Remarks: There do not exist prime knots K and K ′ all of whose branched covers are equal
(see old Problem 1.27, and [600,Kojima,1986]); however there may exist a sequence of prime
knots {Kn} such that the k-fold covers of K and Kn agree for k ≤ n.

Problem 1.75 (Boileau) Let K1, K2 ⊂ S3 be two hyperbolic knots.

(A) If K1 and K2 have the same 2-fold branched covering, then show that either K1 and K2

are mutants, or there is an orientation preserving involution of S3 which carries K1 to
K2.

Remarks: This is true if K1 and K2 are π-hyperbolic (meaning that each 2-fold
branched covering is hyperbolic and the covering involution is an isometry) [117,Boileau
& Flapan,1995,Topology Appl.].

(B) Is there an example of distinct hyperbolic knots with the same 2-fold and 3-fold cyclic
branched coverings?
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Problem 1.76 (Menasco) Conjecture: A hyperbolic knot does not have a closed, totally
geodesic surface imbedded in its complement.

Remarks: The Conjecture is true for alternating knots and 3-braid knots; but there are
hyperbolic links for which the conjecture fails [748,Menasco & Reid,1992].

Problem 1.77 (Gordon) Let M be a compact, orientable 3-manifold with ∂M ∼= T 2,
whose interior admits a complete hyperbolic metric of finite volume. A slope on ∂M is
an isotopy class of simple, closed essential curves in ∂M . For such a slope r, let M(r)
denote the r-Dehn filling of M . The distance between two slopes r1 and r2, denoted by
∆(r1, r2), is defined to the be minimal geometric intersection number between r1 and r2. Let
E(M) = {slopes r on ∂M | M(r) is not hyperbolic}. Let e(M) = |E(M)| (which is finite,
see Theorem 5.8.2 of [1050,Thurston,1977]).

When M is the exterior of a hyperbolic knot K in S3, it is called MK ; (p, q)-Dehn
surgery on K is given by MK(r) where r = p/q. In this case, set E(K) = E(MK) and
e(K) = |E(MK)|. Also, let F be the set of slopes for which MK(r) has finite fundamental
group.

(A) Conjectures: (1) e(K) ≤ 6 if K is not the figure-8 knot or the (−2, 3, 7) pretzel knot;

(2) ∆(r1, r2) ≤ 4 for any two slopes r1, r2 ∈ E(K);

(3) If p/q ∈ E(K), then |q| ≤ 2, and if |q| = 2, then MK(p/q) contains an essential
torus and is not Seifert fibered; furthermore, there is at most one slope p/q ∈ E(K)
with |q| = 2;

(4) If |q| = 2, then MK(p/q) contains an incompressible torus iff K is one of the
Eudave-Muñoz knots k(l,m, n, p) in [286,Eudave-Muñoz,1994].

(5) There are at most 3 slopes which can produce manifolds with an essential torus;

(6) |F| ≤ 4, the slopes in F − ∞ form a set of consecutive integers, F contains at
most one even integer, and the distance between any two slopes in F is at most two.

Remarks: MK(∞) is, of course, always S3.

(1) There is no known bound for e(K) which is independent of K, but it is known
that if M is hyperbolic, then the number of slopes r such that M(r) admits no metric
of (non-constant) negative curvature is at most 24 [104,Bleiler & Hodgson,1995]. A
bound on e(M) would follow from a pinching theorem for negatively curved metrics
on closed 3-manifolds.
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(2) MK(p/q) is irreducible if |q| ≥ 2 [404,Gordon & Luecke,1987,Math. Proc. Cam-
bridge Philos. Soc.] and contains no essential torus if |q| ≥ 3 [406,Gordon & Luecke,
1995].

(3) MK(p/q) has infinite fundamental group if |q| ≥ 3 [146,Boyer & Zhang,1995].

(4) If MK(p/q) is Seifert fibered and |q| > 1, then it has exactly 3 exceptional fibers
with orbit space the 2-sphere [145,Boyer & Zhang,1994b].

(5) If K is the figure-8 knot, then

• MK(0) = T 2-bundle over S1 with monodromy (1
1

1
2
),

• MK(±1) is the Seifert fibered space

( O, o, 0 | −1; (2, 1), (3, 1), (7, 1) ),

in other words, the Brieskorn homology sphere Σ(2, 3, 7), (for the Seifert fibered
space notation, see [986,Seifert,1933,Acta Math.]). (Since the figure-8 knot is
amphicheiral, +n and −n surgeries are orientation reversing homeomorphic).

• MK(±2) is the Seifert fibered space

( O, o, 0 | −1; (2, 1), (4, 1), (5, 1) ).

• MK(±3) is the Seifert fibered space

( O, o, 0 | −1; (3, 1), (3, 1), (4, 1) ).

• MK(±4) is the union of the trefoil knot complementX and the non-trivial I-bundle
KI over the Klein bottle (they are glued together along their T 2 boundaries), and
therefore contains an incompressible torus. (The gluing diffeomorphism is subtle,
so here are the details from Bleiler: coordinatize the torus ∂X for the left handed
trefoil knot the usual way for knots in S3 (with meridian 1/0 and longitude 0/1
chosen so that the Seifert fibre of the left hand trefoil is the 6/ − 1 curve), and
the torus ∂KI by choosing the meridian 1/0 to be the fibre of the circle fibration
of KI over the Möbius band and the longitude 0/1 to be the regular fibre of the
Seifert fibration of KI over the disc with two exceptional fibres each of index 2.
In these coordinates the matrix of the attaching map ∂KI → ∂X is given by:
(−4

1
−5
1

).

In particular, the meridian of ∂X goes to the 1/− 1 curve on ∂KI , which is the
meridian of ∂KI when we consider KI as the exterior of the (1, 2) cable of the S1

factor of S2×S1.) Some of the above calculations can be found in [498,Hodgson,
1986].
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The rest (except∞) are hyperbolic, so e(figure-8 knot) = 10.

6. If K is the (−2, 3, 7) pretzel knot K, then

• MK(16) contains an incompressible torus,

• MK(17) is the quotient of S3 by a finite rotation group isomorphic to I∗×Z/17Z,
where I∗ is the binary icosahedral group (see the groups in Problem 3.37) [104,
Bleiler & Hodgson,1995].

• MK(18) is the lens space L(18, 5),

• MK(37/2) contains an incompressible torus,

• MK(19) is L(19, 7),

• MK(20) contains an incompressible torus.

E(K) consists of these slopes together with the slope∞, so e(K) = 7.

(B) Conjectures: For general M as above (not necessarily a knot exterior),

• e(M) ≤ 7 if M is not the figure-8 knot complement, or the figure-8 sister or a
third manifold (described below);

• ∆(r1, r2) ≤ 8 for any two slopes r1, r2 ∈ E(M);

• there are no more than 5 slopes whose Dehn fillings produce finite or infinite cyclic
fundamental groups, and the distance between any two of these slopes is at most
3.

Figure 1.77.1.

Remarks: e(M) = 10 for the figure-8 knot complement, as discussed above, and
e(M) = 8 for two other cases. Each of these 3-manifolds can be constructed from the
left-handed Whitehead link (drawn in Figure 1.77.1) by deleting one component and
surgering the other with framings +1 (for the figure-8 knot complement), -5 (for the
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left handed Whitehead link Whitehead sister 92
50

Figure 1.77.2.

figure-8 sister), and +2 for the third manifold. Each of these manifolds is also a once
punctured torus bundle, with respective monodromies:(

1 1
1 2

)
,

(
−1 −1
−1 −2

)
and

(
1 1
2 3

)
.

(Note that the figure-8 sister can be obtained from the figure-8 knot complement by
composing the monodromy of the latter with −I ; thus they are mutants and have the
same volume.)

In Table 1.77.1 below, eleven manifolds are listed with e(M) ≥ 7 (it is conjectured that
these are the only ones). For each manifold, the table gives its SnapPea notation,mijk,
[1101,Weeks,1995], its approximate hyperbolic volume, a Dehn surgery description,
and in the case of those which are once punctured torus bundles the monodromy is
given as a composition of the matrices R and L which are (1

0
1
1
) and (1

1
0
1
). The left

handed Whitehead link, the Whitehead sister, and 92
50 (in Rolfsen’s notation) are drawn

in Figure 1.77.2. Note that m016 is the (−2, 3, 7) pretzel knot exterior.

Remarks: Evidence for, and discussion of, these conjectures can be found in [104,Bleiler &
Hodgson,1995], [144,Boyer & Zhang,1994a,Bull. Amer. Math. Soc.], [146,Boyer & Zhang,
1995], [145,Boyer & Zhang,1994b], [286,Eudave-Muñoz,1994], and [500,Hodgson & Weeks,
1995].

Problem 1.78 (Gordon) A Berge knot is the name given to any knot K which lies on the
boundary F2 of a genus two handlebody, standardly imbedded in S3, with the property that
K represents an element of a basis of the fundamental group Z ∗ Z of each complement of
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SnapPea e(M) volume link framingmonodromy
m003 8 2.03 Wh. link −5 −LR
m004 10 2.03 Wh. link +1 LR
m006 7 2.57 Wh. link −5/2
m007 7 2.57 Wh. link −3/2
m009 8 2.67 Wh. link +2 LLR
m016 7 2.83 Wh. sister −17/2
m017 7 2.83 Wh. link −7/2
m023 7 2.99 Wh. link +3 LLLR
m035 7 3.18 Wh. link −4/3
m038 7 3.18 92

50 +2
m039 7 3.18 Wh. link +4 LLLLR

Table 1.77.1.

S3 −F2. Note that any torus knot is a Berge knot because it is the pairwise connected sum
(T 2, (p, q)− curve)#(T 2, (1, 1)− curve) along (B2, B1). Also note that surgery on S3 along
a Berge knot, with framing given by a parallel copy in F2, gives a lens space [79,Berge,1995].

Conjecture: If Dehn surgery on a knot K gives a lens space, then K is a Berge knot.

Remarks: If surgery on a non-torus knot produces a lens space, then it must be integral
surgery [229,Culler, Gordon, Luecke, & Shalen,1987,Ann. of Math.].

Problem 1.79 (Cabling Conjecture) The only way to get a reducible 3-manifold by surgery
on a knot is to surger a cable knot with surgery coefficient equal to the slope of the cabling
annulus.

Remarks: The slope of the cabling annulus is the linking number of the cable with its
pushoff into the annulus (equals the torus minus the torus knot), e.g. 6 surgery on the trefoil
gives L(2, 1)#L(3, 1).

It is known that non-integral surgeries cannot give reducible manifolds by [404,Gordon
& Luecke,1987,Math. Proc. Cambridge Philos. Soc.]. It is also known that for a cable knot,
only the cabling slope will give a reducible manifold; in fact the conjecture is known for
satellite knots [971,Scharlemann,1990,Topology]. The conjecture is also known for strongly
invertible knots [285,Eudave-Muñoz,1992,Trans. Amer. Math. Soc.], for alternating knots
[749,Menasco & Thistlethwaite,1992,J. Reine Angew. Math.], and for symmetric knots with
symmetries of order ≥ 5 [683,Luft & Zhang,1994,Math. Ann.].
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Problem 1.80 (Boileau) Let (M1, K1), (M2, K2) be two pairs where each Mi is an ori-
entable, irreducible, 3-manifold, and each Ki is a null-homotopic knot in Mi.

(A) Conjecture: If M1 − K1 is homeomorphic to M2 − K2, then the pair (M1, K1) is
homeomorphic to the pair (M2, K2).

(B) Conjecture: Any non-trivial surgery on K1 never gives a manifold with the same
simple homotopy type as M1.

Remarks: Conjecture (B) implies Conjecture (A). Conjecture (B) is true if β1(M1) ≥
1, or if π1(M1) is infinite and M1 − K1 contains an incompressible torus which does
not cobound a cable space of order 2 with the boundary [116,Boileau, Domergue, &
Mathieu,1995].

(C) Conjecture: A non-trivial surgery on K1 produces a bundle over S1 iff K1 is a fibered
knot in M1 and it is the longitudinal surgery.

Remarks: If the surgery produces a bundle, then either it is longitudinal surgery or
M1 is a bundle over S1 [125,Boileau & Wang,1995].

Problem 1.81 (Bleiler) Let M be an oriented 3-manifold with ∂M = T 2, and let r be a
slope (an isotopy class of unoriented, simple, closed curves) in T 2. Let M(r) = M ∪B2×S1

with ∂B2 glued to the slope r (this is called an r-Dehn filling). One also refers to M(r1)
or M(r2) as surgeries on N = M(r1). Call two surgeries purely cosmetic if there is an
orientation preserving diffeomorphism between M(r1) and M(r2), and chirally cosmetic if
the homeomorphism is orientation reversing. Call two slopes, as well as the corresponding
fillings, equivalent if there exists a homeomorphism of M taking one slope to the other.

(A) Cosmetic surgery conjecture: Two surgeries on inequivalent slopes are never purely
cosmetic. Equivalently, if M(r1) = M(r2) for inequivalent slopes, then the homeomor-
phism is orientation reversing.

Remarks: Gordon & Luecke [405,1989,J. Amer. Math. Soc.] proved that there are
no cosmetic (pure or chiral) surgeries on S3 or S2 × S1. However, Mathieu [706,1990]
found an infinite set of pairs of inequivalent chirally cosmetic surgeries on the right
hand trefoil exterior. Rong [936,1995b] classified the inequivalent cosmetic surgeries on
Seifert fibered manifolds M, and noted that all are chiral. Also, there exist hyperbolic
manifolds M which have a pair of inequivalent slopes yielding oppositely oriented lens
spaces ([105,Bleiler, Hodgson, & Weeks,1995]. These arise from certain 1-bridge braids
in S1×B2 which have inequivalent slopes which fill to S1×B2, [78,Berge,1991,Topology
Appl.], [357,Gabai,1989,Topology]).
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(B) Conjecture: There are no cosmetic surgeries, pure or chiral, on hyperbolic manifolds
which yield hyperbolic manifolds.

(C) Conjecture: Closed geodesics in a hyperbolic 3-manifold are determined by their com-
plements (even allowing orientation reversing diffeomorphisms).

Remarks: (B) ⇒ (C) but they are not equivalent as it may happen that the core of
one of the surgeries is not isotopic to a closed geodesic.

One can ask the above questions with homeomorphism replaced by homotopy equiva-
lence or simple homotopy equivalence (see Problem 1.80 for a version which is different
because the knots are null-homotopic). There are hyperbolic knot exteriors in lens
spaces with a pair of slopes which yield non-homeomorphic but homotopy equivalent
lens spaces [105,Bleiler, Hodgson, & Weeks,1995].

A third equivalent formulation of Conjecture (A) is the

(D) Oriented knot complement conjecture: If K1 and K2 are knots in a closed, ori-
ented 3-manifold M whose complements are homeomorphic via an orientation-preserving
homeomorphism, then there exists an orientation-preserving homeomorphism ofM tak-
ing K1 to K2.

Problem 1.82 Characterize those framed links in S3 which produce a connected sum of
S1 × S2’s.

Conjecture: Any link which can be obtained from the 0-framed unlink by handle slides
(no stabilization by ±1 unknots necessary).

Remarks: A 0-framed knot which does not give S1× S2 is said to have Property R; Gabai
[355,1987a,J. Differential Geom.] proved that all non-trivial knots have Property R (see
Problem 1.17). This problem asks for a generalization of Property R to multi-component
links.

This question is related to closed, smooth 4-manifolds with handlebody decompositions
having no 1-handles (or, dually, no 3-handles); the boundary of the 0-handle union the
2-handles must be a connected sum of S1 × S2’s, as well as surgery on a framed link.

Problem 1.83 (Rudolph) (A) What is the Grothendieck group, G, of (isotopy classes of)
oriented, Seifert fibered surfaces in S3 under Murasugi sum? In particular, is it finitely
generated?

Remarks: Murasugi sum is Gabai’s name for an operation (called star product by
Murasugi [818,1963,Amer. J. Math.], and plumbing by Stallings [1010,1978]) which



61

combines two Seifert surfaces, S1 and S2, along a disk in each, see Figure 1.83.1, to
produce a Seifert surface S = S1 ? S2 with Milnor number µ(S) = µ(S1) + µ(S2) (µ(S)
is the rank of H1(S)). A Seifert fiber surface is a Seifert surface for ∂S which is a fiber
for a bundle map S3 − ∂(S)→ S1. Stallings [ibid.] showed that S is a fiber surface if
S1 and S2 are, and Gabai [353,1983] proved the converse.

Figure 1.83.1.

(B) Are all Seifert fibered surfaces equivalent after stabilizing by Hopf plumbing? Probably
not!

Remarks: Hopf plumbing is a special case of Murasugi sum in which one is only
allowed to plumb S with a Hopf band, a copy of an annulus with one full twist in it.
Harer [440,1982a,Topology] showed that all Seifert fibered surfaces are equivalent after
stabilizing by Hopf plumbing if twisting (defined by Stallings [ibid.] and generalized
by Harer [ibid.]) is performed on the stabilized surfaces.

(C) There is a geometrically defined homomorphism (µ, λ) : G → Z ⊕ Z where µ is the
Milnor number, and λ is the enhancement from [958,Rudolph,1987,Comment. Math.
Helv.] and [840,Neumann & Rudolph,1987,Math. Ann.] (λ is 0 on the fiber surface
of a positive Hopf link, and 1 on the negative Hopf link).

Is (µ, λ) an isomorphism?

Remarks: Neumann & Rudolph [ibid.], [841,1988], [842,1990,Topology], have studied
a generalization of Murasugi sum, called unfolding, defined for fibered knots in all
dimensions. In higher (odd) dimensions, in the simple case (highly connected fibers),
(µ, λ) is an isomorphism from the geometric Grothendieck group G of fibered knots
with respect to unfolding to Z ⊕ Z/2. This is also the algebraic Grothendieck group
of Seifert forms with respect to upper-triangular block sum, and the Seifert form of a
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simple fibered knot determines it in G in all ambient dimensions except 3, where this
fails totally.

Problem 1.84 (Birman & Menasco) Markov’s Theorem [90,Birman,1974], [808,Morton,
1986,Math. Proc. Cambridge Philos. Soc.] states that two closed braids β̂1 and β̂2 are
equivalent as links iff β̂1 and β̂2 are related by a finite sequence of the following moves:

(i) conjugation,

(ii) stabilizing

Destab.

Stab.

Figure 1.84.1. Stabilization and destabilization

The difficulty in using these simple moves is that arbitrarily many stabilizations (increas-
ing the braid index arbitrarily) may be necessary, and one does not know exactly where the
stabilization must be placed (unlike stabilization for equivalence of Heegaard splittings which
may take place at any point of a splitting surface).

Birman & Menasco show that the following three moves, which do not increase braid
index, suffice to determine whether β̂ is the unlink [96,Birman & Menasco,1992,Trans. Amer.
Math. Soc.], or is a split link or is a composite link [95,Birman & Menasco,1990,Invent.
Math.].

(1) conjugation

(2) destabilization (see Figure 1.84.1)

(3) exchange move (see Figure 1.84.2)

J. Los [678,1994,Topology] showed that these three moves sufficed to determine whether
β̂ was a torus link. Birman & Menasco conjecture that moves (1) - (4) determine whether
β̂1 and β̂2 are equivalent links, where (4) is the move:

(4) braid preserving generalized flype (the simplest type is given in Figure 1.84.3)
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Figure 1.84.2. Exchange Move

Note that (4) includes (3) as a special case. Birman & Menasco have done extensive work
[95,Birman & Menasco,1990,Invent. Math.], [96,Birman & Menasco,1992,Trans. Amer.
Math. Soc.], [97,Birman & Menasco,1993,Pacific J. Math.] towards verification of the con-
jecture.

It follows that in using Markov’s moves, one does not have to stabilize an n-braid β̂
to more than a 2n-braid because move (4) can be realized by a sequence of Markov moves
with this property. However, one may have to stabilize to, and destabilize from, a 2n-braid
repeatedly.

(A) The general problem is to find effective algorithms for recognizing whether there is a
sequence of the above moves which carries β̂1 to β̂2.

There is an effective algorithm for recognizing whether two closed braids β̂1 and β̂2 are
conjugates [367,Garside,1969,Quart. J. Math. Oxford Ser. (2)], [1056,Thurston,1988,
Bull. Amer. Math. Soc.], [276,El-Rifai & Morton,1994,Quart. J. Math. Oxford Ser.
(2)].

(B) Is there an effective algorithm for determining whether a given braid β̂, perhaps after

P

Q

R

P

Q

R

Figure 1.84.3. Simplest generalized flype
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conjugation, admits any of the moves (2), (3), or (4)?

Remarks: One aims to reduce β̂ to minimal braid index n, so that it may be compared
via (1), (3) and (4), to another minimal n-braid.

Note that (B) has been solved for 3-braids [97,Birman & Menasco,1993,Pacific J.
Math.], but it is already unknown for n > 3, which is a qualitatively different problem
due to the different natures of B3 and Bn for n > 3 (B3 is a free product with amalga-
mation of two cyclic groups [ibid.] but nothing like that is true for higher braid groups;
also B3 is linear, with a faithful representation to 2 × 2 matrices (over a polynomial
ring) [90,Birman,1974; Chap. 3], whereas the higher braid groups are not known to be
linear).

In attempting to solve (A) and (B), Menasco has been developing the following approach.
There is a one-to-one correspondence between conjugacy classes of braids β and isotopy
classes of homeomorphisms f of B2 which keep a set of n points invariant.

Bestvina & Handel in [83,1995,Topology] and J. Los [677,1993,Proc. London Math.
Soc.] gave effective algorithms for deciding whether the isotopy class of f contained a

(a) periodic diffeomorphism, or

(b) a reducible diffeomorphism (there exists an invariant closed 1-manifold and
the diffeomorphism restricted to each complementary region is either peri-
odic or pseudo–Anosov), or

(c) a pseudo–Anosov diffeomorphism.

The algorithm in (b) produces the 1-manifold, and in (c) produces the invariant train
track.

It follows that braids fall into the three categories of

(a) periodic,

(b) reducible, or

(c) pseudo–Anosov.

Note that if β is periodic of order p, then βq is equal to p full twists in the n strands for
some p and q with q ≥ 1.
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(C) Conjecture: If β is periodic and |p/q| > 1, then β̂, up to conjugacy, does not admit
moves (2), (3), or (4).

If β is reducible, then β̂ reduces to the study of simpler braids.

If β is pseudo–Anosov, there is an invariant train track, and its thickening has an
outside boundary component which is S1; this S1 becomes a torus T 2 under suspension.
The outside cusps of the train track produce a p/q-torus link in the T 2 (see Figure
1.84.4).

A possible train track for D2 − 4pt′s Fibered regular neighborhood of train track

Figure 1.84.4.

(D) Conjecture: if β̂ up to conjugacy admits a move (2), then |p/q| ≤ 1.

(E) Conjecture: if β̂ up to conjugacy admits a move (3), then |p/q| ≤ 2.

(F) Conjecture: if β̂ up to conjugacy admits a move (4), then |p/q| ≤ 4.

Remarks: For 3-braids, there are examples for which the above inequalities are sharp.

Problem 1.85 (Whitten) Is the commutator subgroup of a knot group, π1(S3−K), Hop-
fian?
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Remarks: The answer is yes if the commutator subgroup is finitely generated, since then
it is free of finite even rank equal to the genus of the knot (see Theorem 4.5.1, page 29 in
[844,Neuwirth,1965]). Such a subgroup is always residually finite [472,Hempel,1976]. For
the definitions of Hopfian and residually finite, see Problem 3.33.

Problem 1.86 (Cooper) Let K be a smooth knot in S3 and let X = S3 − K. Is there
always an irreducible representation of π1(X) into SL(2,C)?

Remarks: Note that we may replace SL(2,C) by PSL(2,C) in this problem because the ob-
struction to lifting a representation lies in H2(X;Z/2Z) = 0. If K is a hyperbolic knot, then
the hyperbolic structure gives an irreducible representation (irrep) of π1(X) into PSL(2,C).
Thurston [1050,1977] shows that in fact there is an affine curve of representations and all
but finitely many of them are irreducible.

Suppose that K is not hyperbolic and is not the unknot; then K is either a torus knot
(and it is easy in this case to find irreps), or is a satellite knot. In the latter case, X contains
an essential non-boundary parallel torus. If the algebraic winding number of the knot in the
torus is non-zero, and if the complement of the torus admits an irrep, then this irrep can be
extended over X. For more information, see [227,Cooper, Culler, Gillett, Long, & Shalen,
1994,Invent. Math.].

Problem 1.87 (Lickorish) It is known, using the Seifert form, that the Alexander poly-
nomial of a boundary link (a link that bounds a disconnected orientable surface in S3) is
zero.

Prove this using only the Conway skein formula.

Remarks: The right sort of proof (recreating the Seifert surface in skein theory is not
cricket) ought to give new information on the HOMFLY polynomial of such links. Even
though the skein formula completely characterizes the HOMFLY type polynomials, there
may be some facts that cannot be proved in a straightforward way; this is a test case.

Problem 1.88 (Kuperberg) A prime knot is either a hyperbolic knot, or is a satellite or
torus knot.

(A) Is the Jones polynomial of a satellite knot always non-trivial?

Remarks: For the (p, q)-torus knot the Jones polynomial is

(t(p−1)(q−1)/2)(1− t(p+1) − t(q+1) − t(p+q))/(1− t2)
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where the polynomial is normalized as 1 for the unknot [551,Jones,1987,Ann. of Math.]
.

(B) Does the Jones polynomial (using cables) determine the volume of a hyperbolic knot?
Determine should at least mean that knots with different volume have different polyno-
mials.

(C) (Jones) Does the Jones polynomial distinguish the unknot? Or, as the questions is
often put, is there a Jones knot, a knot with the same Jones polynomial as the unknot
(see Problem 3.108)?

Problem 1.89 (Stanford) Given a positive integer n, consider the finite set S(n) of ori-
ented knots with diagrams of less than n crossings. Let f(n) be the smallest integer with
the following property: Whenever K,K ′ ∈ S(n) are two knots such that v(K) 6= v(K ′) for
some Vassiliev invariant v, then there exists a Vassiliev invariant w of order less than f(n)
such that w(K) 6= w(K ′).

(A) What is the asymptotic behavior of f(n)?

Remarks: Little is known in general about f , except that it is bounded below by
log2(n)− 1.

(B) Do Vassiliev invariants distinguish knots from their reverses?

Remarks: The first oriented knot which is different from its reverse (knot with opposite
orientation) is 817. It is known that no Vassiliev invariant of order ≤ 9 can distinguish a
knot from its reverse, and so far there is no known higher order Vassiliev invariant which will
distinguish a knot from its reverse. So, for example, a result like f(n) ≤ n would show that
Vassiliev invariants do not distinguish all oriented knots from their reverses (see Problems
1.61 and 1.92).

Vassiliev invariants were introduced in [1072,Vassiliev,1990], and good further references
are [94,Birman & Lin,1993,Invent. Math.] and [62,Bar-Natan,1995a,Topology].

Problem 1.90 (Przytycka & Przytycki) The problem of computing the Jones, skein
and Kauffman polynomials and most of their substitutions is NP-hard which (up to the
famous conjecture that NP is not P) means that they cannot be computed in polynomial
time. A few values of these polynomials can be calculated in polynomial time (see below); if
the polynomial is expanded as a series about one of these points, can the coefficients in the
series be calculated in polynomial time?
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In what follows we use the skein relations:

for the Jones polynomial:

1

t
VL+(t)− tVL−(t) = (

√
t−

1
√
t
)VL0(t);

for the skein (Homflypt) polynomial, [341,Freyd, Yetter, Hoste, Lickorish, Millet, & Ocneanu,
1985,Bull. Amer. Math. Soc.], [904,Przytycki & Traczyk,1987,Kobe J. Math.]:

aPL+ + a−1PL− = zPL0;

for the Kauffman polynomial of unoriented framed links:

ΛL+(a, z) + ΛL−(a, z) = z(ΛL0(a, z) + ΛL∞(a, z)),

and Λ (a, z) = aΛ (a, z).

We assume that the number of components of a link is known or bounded uniformly from
above.

(1) Conjecture:

(a) For any fixed k, the Jones polynomial VL(t) mod (t+1)k can be computed in poly-
nomial time.

(b) Let VL(t) = Σi=0ai(t+1)i; then ai can be computed in n3+2i-time, where n denotes
the number of crossings of a diagram.

Remarks: a0 is the determinant of a link, so it can be computed in n3 time (in fact
even quicker as it can be computed as a determinant). The above expansion of the
Jones polynomial is related (via Listing–Tait translation of knots to graphs) to the
rank polynomial of the graph [892,Przytycka & Przytycki,1993].

One can compute the Jones polynomial at t0 = ±1,±i,±e2πi/3 and ±e4πi/3 in polyno-
mial time and, as shown in [1075,Vertigan,1995], computing all other substitutions is
NP-hard; compare [1107,Welsh,1993].

(2) Conjecture: The kth derivative of VL(t) at t0 can be computed in polynomial time (for
fixed k).
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Remarks: This is true for t0 = 1 [892,Przytycka & Przytycki,1993] and the kth deriva-
tive can be interpreted as the kth Vassiliev invariant related to the Jones polynomial.

(3) Conjecture:

(a) Consider the partial derivative ∂i+jPL(a, z)/∂ia∂jz. For fixed i and j one can com-
pute this derivative in polynomial time for: z = ±(a0 + a−1

0 ), (a, z) = (±1,±
√

2),
or (±1,±1), or (±e±πi/6,±1), where all the signs are independent.

(b) ∂iPL(a, z)/∂ia can be computed in polynomial time at a = ±i.

Remarks: Vertigan [ibid.] has proved that computing substitutions of the skein poly-
nomial is NP-hard except for the substitutions listed above (when they have polynomial
complexity). Part (b) is the most interesting as PL(i, z) is the Alexander polynomial of
L and if the conjecture holds one would have sensibly defined the Alexander–Vassiliev
expansion of the skein polynomial. z#|L|−1PL(a, z) is a polynomial in the variable z
(coefficients are Laurent polynomials in the variable a). Vertigan [891,Przytycka &
Przytycki,1992] proved the remarkable result that derivatives of this polynomial with
respect to z can be computed in polynomial time (in other words any fixed coefficient
of expansion of PL(a, z) at z = 0 can be computed in polynomial time).

(4) Conjecture:

(a) Consider the partial derivative of the Kauffman polynomial of a framed unoriented
link ∂i+jΛL(a, x)/∂ia∂jx. For fixed i and j one can compute this derivative in
polynomial time for: (a, x) = (−q±3, q + q−1) where q16 = 1 or q24 = 1 but
q 6= ±i, or (a, x) = (q±3, q + q−1) where q8 = 1 or q12 = 1 but q 6= ±i, or
(a, x) = (−q±1, q + q−1) where q16 = 1 but q 6= ±i, or (a, x) = (−q±1, q + q−1)
where q5 = 1, or x = ±(a+ a−1) where the number of components of L is fixed.

(b) ∂iΛL(a, x)/∂ia can be computed in polynomial time at a = ±i.

Problem 1.91 (Przytycki) Denote the reverse of K by −K (the knot obtained from an
oriented knot K by changing its orientation, see Problem 1.61). Let s(K) denote the satellite
of K with pattern s (see Problem 1.13). It has been shown in [654,Lickorish,1988] and [895,
Przytycki,1989,Canad. J. Math] that the skein (Homflypt) and Kauffman polynomials of
links which are satellites (with given pattern) of K1#K2 and K1# − K2 are the same. In
particular if two knots K ′ andK ′′ are satellites (with given pattern) ofK1#K2 and K1#−K2

then the skein and Kauffman polynomials of links which are satellites of them have the same
skein and Kauffman polynomials.
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(1) Conjecture:

(a) If K is a simple (the complement has no, non-parallel to the boundary, incom-
pressible tori or annuli), prime knot and for a knot K ′ the skein and Kauffman
polynomials of any satellite (with the same pattern) of K and K ′ are the same
then K = ±K ′.

(b) Consider any pair of oriented knots K and K ′. The skein and Kauffman poly-
nomials of any satellite (with the same pattern) of K and K ′ are the same if and
only if

K = s(ε1K1#ε2K2# · · ·#εnKn) and

K ′ = s(ε′1K1#ε
′
2K2# · · ·#ε

′
nKn),

where εi, ε′j are +1 or −1.

Remarks: Conjecture 1(a) was first formulated in [893,Przytycki,1986] and published
in [809,Morton,1988] (Problem 16); however the assumption that K is simple was
wrongly omitted. Conjecture (1) is closely related to the Bar-Natan conjecture that
Vassiliev invariants are as powerful as skein and Kauffman polynomials together with
cablings (see Conjecture 2.13 of [903,Przytycki,1994c]).

It has been proven in [810,Morton & Traczyk,1988] that if two knots differ by mutation
then they cannot be distinguished by the Jones polynomial of their satellites.

(2) Question: (Przytycki) Let K be a prime, simple, unoriented knot. Is there any
knot, other than mutations of K, which cannot be distinguished from K by the Jones
polynomial of K and its satellites?

(3) Question: (Kanenobu) Are there infinitely many different knots with the same Kauff-
man polynomial?

Remarks: Kanenobu [559,Kanenobu,1986,Proc. Amer. Math. Soc.] found infinitely
many different knots with the same skein (Homflypt) polynomial.
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(4) Question:

(a) (Rong 1991) Is the homology group H1(M
(2)
L ) determined by the Kauffmann poly-

nomial of L (where M
(2)
L is the 2-fold branched cover of S3 along L)?

(b) Is it determined by the Jones polynomials of cables of L?

Remarks: The absolute value of VL(−1) (the determinant of L) is the order of

H1(M
(2)
L ) (order 0 means that the group is infinite).

log3(|V 2
L (eπ/3)|) = rank(H1(M

(2)
L );Z/3Z), [655,Lickorish & Millett,1986,Comment.

Math. Helv.].

log5(|F 2(1, 2cos(2π/5))|) = rank(H1(M
(2)
L );Z/5Z) [552,Jones,1989,Comm. Math. Phys.]

Rong [933,1991,Indiana Univ. Math. J.] observed that H1(M
(2)
L ;Z/5Z) is not deter-

mined by the Jones and skein polynomials (more generally skein equivalence class). He
uses the Kanenobu examples [559,Kanenobu,1986,Proc. Amer. Math. Soc.], the sim-

plest being 41#41 and 89 ( M (2)
L is equal to L(5, 2)#L(5, 2) and L(25, 7) respectively).

Problem 1.92 (Przytycki) Skein modules are quotients of free modules over isotopy classes
of links (possibly framed or oriented) in a 3-manifold by properly chosen local (skein) re-
lations. In the choice of relations we are guided by polynomial invariants of links in S3.
Very little is known about skein modules, but they should become the main objects of al-
gebraic topology based on knots. The first main goal should be to find an analogy to the
Mayer–Vietoris or Seifert–van Kampen theorems (methods of TQFT should be of use); also
criteria for knot periodicity give some hope for an analogy to the Smith theory of homology
of (branched) coverings. There are now more problems than answers so here are a few rea-
sonable conjectures (also see [508,Hoste & Przytycki,1992], [897,Przytycki,1991,Bull. Polish
Acad. Sci. Math.], [1069,Turaev,1990,J. Soviet Math.]).

Part I: The q-deformation of the fundamental group.

Let M be oriented 3-manifold and Lfr denote the (ambient) isotopy classes of oriented
framed links in M . Let R = Z[q±1] and Sfr denote the submodule of the free module RLfr

(i.e. free module span by Lfr), generated by skein expressions L+ − q2L− and L(1) − qL
where L(1) denotes a framed link obtained from L by adding one positive twist to its framing
(compare Figure 1.92). We get our skein module as the quotient:

Sfr(M) = RLfr/Sfr.
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L+ L−

L+ L−

(A) Compute Sfr(M) for any oriented 3-manifold M .

Remarks: If q = 1 (i.e. R = Z) and we allow the empty knot then our skein
module become the symmetric tensor algebra over free module of conjugacy classes of
the fundamental group of M , SZπ̂1(M). For general R, and M a rational homology
sphere or a compact submanifold, Sfr(M) = SRπ̂1(M). The same holds true if M has
no nonseparating 2-torus or 2-sphere, since otherwise the skein module has torsion.
For example, for a knot K which cuts some 2-sphere k times (algebraically), one has
(q2k − 1)K = 0.
The case of the skein module being a q-deformation of the first homology group (with
the skein relation L+−qL0) is fully computed in [902,Przytycki,1994b,Abstracts Amer.
Math. Soc.].

Part II: The skein module based on the Homflypt skein relation.

LetM be an oriented 3-manifold, L the set of all oriented links inM up to ambient isotopy
of M , R = Z[v±1, z±1], RL the free R-module generated by L, and M3 the submodule of
RL generated by the skein expressions v−1L+ − vL− − zL0. For convenience we allow the
empty knot, ∅, and add the relation v−1∅ − v∅ − zT1, where T1 denotes the trivial knot.
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+L -L L 0

Figure 1.92.1.

Then the third skein module of M is defined to be:

S3(M) = S3(M ;Z[v±1, z±1], v−1L+ − vL− − zL0) = RL/M3.

(B) Conjecture: IfM is a rational homology 3-sphere or a compact, connected 3-dimensional
submanifold of a rational homology sphere, then S3(M) is isomorphic as an R-module
to the symmetric tensor algebra S(Rπ̂0), where π̂0 = π̂ − {1}, and π̂ is the set of
conjugacy classes of the fundamental group π = π1(M).

Remarks: The Conjecture holds for S3, for then it is equivalent to the existence
of the skein polynomial. More generally it holds for a product of a surface and an
interval [899,Przytycki,1992b]. In this case the skein module has a structure of a
Hopf algebra, [508,Hoste & Przytycki,1992], [898,Przytycki,1992a], [1069,Turaev,1990,
J. Soviet Math.], [1070,Turaev,1991,Ann. Sci. École Norm. Sup. (4)].

(C) Conjecture: Let F be an incompressible surface in an oriented 3-manifold M . Then
the map of skein modules, S3(M−F )→ S3(M), generated by the inclusion, M−F ↪→
M , is a monomorphism.

(D) Questions:

(a) If M is compact and irreducible and does not allow a non-separating torus, is
S3(M) free?

(b) If M is compact and irreducible, is S3(M) always free?

(c) If M is irreducible, is S3(M) always torsion free?

Remarks: Non-separating 2-spheres in M produce torsion in S3(M). The simplifi-
cation of this skein module (the one with relation q−1L+ = qL− for framed oriented
links), has torsion related to a nonseparating torus.

The third skein module of the Whitehead manifold is not free (but possibly torsion
free as in the case of the skein module based on the Kauffman bracket, [510,Hoste &
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Przytycki,1995]). The third skein module of a possible counterexample to the Poincaré
Conjecture is unlikely to be free [158,Bullock,1994,Topology Appl.].

Part III: The skein module based on the Kauffman bracket skein relation.

Let M be an oriented 3-manifold, R = Z[A±1] and S2,∞(M) denote the submodule of

RLfr2 generated by skein expressions L = ALA+A−1LB and L(1) = −A3L ; see Figure 1.92.2
for the triple L,LA, LB .

LLL
A B

Figure 1.92.2.

The Kauffman bracket skein module is defined as: S2,∞(M) = RLfr2 /S2,∞(M).

(E) Conjecture: If M is irreducible and has no incompressible non-parallel to the bound-
ary, closed surfaces then S2,∞(M) is torsion free. If M is also compact, then S2,∞(M)
is a free module.

Remarks: Conjecture (E) is proven for F × [0, 1] [897,Przytycki,1991,Bull. Polish
Acad. Sci. Math.], for lens spaces [509,Hoste & Przytycki,1993,J. Knot Theory Ram-
ifications], the classical Whitehead manifold [510,Hoste & Przytycki,1995] and for the
complement of (2, k) torus knots [160,Bullock,1995b]. There are examples of irre-
ducible 3-manifolds containing an incompressible torus such that S2,∞ has a torsion
element (e.g. 3-torus or the double of the complement of the figure eight knot).

(F) Conjecture: If M = M1#M2, where Mi is not equal to S3 possibly with holes, then
S2,∞(M) has a torsion element.

Remarks: Conjecture (F) holds when H1(M1;Z) and H1(M2;Z) are not 2-torsion.

(G) Questions:

(i) Is the skein module S2,∞(M) free for a compact, irreducible 3-manifold without a
incompressible non-parallel to the boundary torus (but with, possibly, higher genus,
closed, nonseparating surfaces)?
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(ii) Is the skein module S2,∞(M) free for a closed irreducible non-Haken 3-manifold?

(H) Conjecture: (Traczyk) If M is a simple connected 3-manifold other than S3 (possibly
with holes), then S2,∞(M) is infinitely generated.

Remarks: Conjecture (H) holds for some Whitehead type manifolds (including the
classical Whitehead manifold) [510,Hoste & Przytycki,1995].

For M = F × I , the Kauffman bracket skein module is an algebra, where L1 ∗ L2 is
obtained by placing L1 above L2 in M = F × I , and the empty knot, ∅, is the unit of the
algebra.

(J) Question: (Bullock, Przytycki) Find the structure of the algebra.

Remarks: Bullock [159,1995a] proved that the algebra is always finitely generated. It
is abelian for F = B2, annulus or a disk with 2 holes; in the last case the skein module
is algebra isomorphic to Z[A±1][x, y, z]. The first interesting case occurs when F is a
torus. Then S2,∞(T 2 × I) is a quantization of the free commutative algebra on three
generators, x, y, z modulo the relation xyz + x2 + y2 + z2 = 4.

Part IV: The fourth, unoriented, skein module.

Let M be an oriented 3-manifold and Lfr denote the set of ambient isotopy classes of
unoriented framed links in M . Let R = Z[q±1] and Sfr4 denote the submodule of the free
module RLfr, generated by L(1) − qL and skein expressions

v3(q)L+++ + v2(q)L++ + v1(q)L+ + v0(q)L0,

where v3(1) = −v0(1) = 1 and v2(1) = v1(1) = 0. We get our skein module as the quotient:

Sfr4 (M) = RLfr/Sfr4 .

It is very difficult to analyze this skein module in general, so we will limit our problems to
the case of M = S3.

(K) Questions:

(i) Is Sfr4 (S3) generated by trivial links?

(ii) Is it a free module?
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(iii) Is the submodule generated by links of fixed braid index, finitely generated?

Remarks: For q = 1, a positive answer for (i) is equivalent to the Montesinos–
Nakanishi conjecture (see Problem 1.59). More generally, if the Montesinos–Nakanishi
conjecture holds then Sfr4 (S3) modulo the ideal (q− 1)k+1 is generated by trivial links
(this reduction of the skein module can be treated as its kth degree Vassiliev part). (iii)
holds for braid index ≤ 5, by [228,Coxeter,1957].

Part V: The Vassiliev–Gusarov skein modules.

Let Ksg denote the set of singular oriented knots in M where we only allow imbeddings
and immersions of S1 with double points, up to ambient isotopy; additionally, for any dou-
ble point we choose an orientation for a small ball around it (if M is oriented the chosen
orientation of the ball agrees with that of M). Let R be a commutative ring with 1 (e.g. Z
or Q). In RKsg we consider resolving singularity relations ∼: Kcr = K+ −K− ; see Figure
1.92.3.

K K Kcr + -

Figure 1.92.3.

RKsg/ ∼ is obviously R-isomorphic to RK. Let Cm be the submodule of RKsg/ ∼= RK
generated by immersed knots withm double points. Themth Vassiliev–Gusarov skein module
Wm(M,R) is defined by Wm(M,R) = RK/Cm+1. We have the filtration:

· · · ⊂ Cm ⊂ · · · ⊂ C1 ⊂ C0 = RK

and therefore we have also the sequence of epimorphisms {1} ← W0 ← W1 ← W2 ← · · · ←
Wm ← · · · We define the V–G skein module W∞(M,R) as the inverse limit W∞(M,R) =
lim←Wm(M,R). Equivalently the V–G skein module is the completion R̂K of RK with
respect to the topology yielded by the sequence of descending submodules Ci. The kernel of
the natural R-homomorphism θ : RK → R̂K is equal to

⋂∞
i=0 Ci.
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A V–G invariant of degree m of knots is defined as an element of the dual space
V m(M,R) = W ∗

m(M,R) = Hom(Wm(M,R), R) (sometimes it is defined as an element of
HomZ(Wm(M,Z), A), where A is an abelian group).

Computing the V–G skein module of any 3-manifold is a very difficult problem, so we
restrict to the case of M = S3.

There are two competing conjectures:

(L) Conjecture: (Vassiliev) The V–G invariants classify oriented knots.

(M) Conjecture:

(a) (Lin). No V–G invariant distinguishes K from −K, where −K denotes the knot
obtained from K by reversing its orientation.

(b) (Bar-Natan) [62,1995a,Topology]. The V–G invariants are precisely as power-
ful as the skein (Homflypt) and Kauffman polynomials of knots and all of their
cablings (in particular (a) holds).

(c) (Przytycki) The V–G invariants of degree 10 or less can be deduced from the
skein (Homflypt) and Kauffman polynomials of knots and their 2-cables.

(d) (Przytycki) The R-algebra
⋂
Ci is the smallest subalgebra of RK containing the

expressions K−(−K) and closed under the operation of taking satellites (including
connected sum).

Remarks: If Conjecture (1) in Problem 1.91 holds, then (b) follows from (c).

(N) Conjecture: (Gusarov) Vassiliev–Gusarov skein modules of S3 are torsion free.

Remarks: (N) has been checked by Gusarov [424,1994,Adv. Soviet Math.] up to
degree 6, and Bar-Natan has checked that they have no 2-torsion up to degree 9.

Consider the skein module Ak(M) of an oriented 3-manifold M built in the same way
as the Vassiliev–Gusarov skein modules, but using oriented links, R = Z[z±1], and with
resolving singularity equation:

Lx = L+ − L− − zL0.

(P) Conjecture: (Przytycki) For fixed k, and any generating set of Ak(S3), any link
can be expressed in the generators in polynomial time with respect to the number of
crossings.
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Remarks: A0(S3) is freely generated by the unknot, and a coefficient of any link
is its Alexander polynomial; thus Conjecture (P) holds for k=0. The structure of
A1(S

3) follows from results in [935,Rong,1995a]. GenerallyAk(S
3) is finitely generated.

Conjecture (P) holds for the standard Vassiliev–Gusarov skein modules (of S3), and
the polynomial complexity of Vassiliev invariants is, possibly, their most important
feature.

Problem 1.93 Conjecture: The untwisted double of a knot is ribbon iff the knot is ribbon.

Remarks: This problem may be easier than the corresponding problem for slice (Problem
1.38) because it could be a 3-dimensional issue rather than 4-dimensional. Recall that a knot
is ribbon if it bounds an immersed disk in S3 such that the singular set consists entirely of
ribbons, as in Figure 1.93.1. A slice knot is one which bounds a smoothly imbedded disk in
B4.

Figure 1.93.1.

Problem 1.94 Does every element of order 2 in the group, C3
1 , of concordance classes of

knots in S3 contain a representative which is isotopic to its inverse?

Remarks: The point to the question is that C3
1 may be very simple in that every knot is

of infinite order or is concordant to a knot K which is isotopic to −K, its inverse (for the
definition, see Problem 1.61; also Problem 1.32).

Problem 1.95 (Akbulut) Does there exist a homology 3-sphere Σ, other than S3, with the
following property: any knot K, representing 0 ∈ π1(Σ), which is slice in some contractible
4-manifold W which Σ bounds, is already slice in Σ× [0, 1]?

Remarks: It is likely that S3 satisfies the property (W is homeomorphic to B4, but it could
have a smoothing in which a knot K is slice even though K is not slice in S3 × [0, 1]).
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Problem 1.96 (Cochran) (A) Give a geometric description of those links in S3 for which
all of Milnor’s µ̄-invariants are zero.

Remarks: The original paper is [765,Milnor,1957b]. The types of links known to
have vanishing µ-invariants are boundary links, slice links, homology boundary links
[483,Hillman,1981], fusions of boundary links [214,Cochran,1990], and E-links [213,
Cochran,1987,Invent. Math.]. All of the examples known are fusions of boundary
links, so:

(B) Is every classical link with µ̄ = 0 isotopic to (or concordant to) a fusion of a boundary
link?

Remarks: Since Milnor’s invariants, properly interpreted, have been shown to be Vassiliev
invariants of finite type [63,Bar-Natan,1995b] [660,Lin,1992], [661,Lin,1995], these questions
are related to the problem of finding links all of whose Vassilliev invariants are the same as
a trivial link.

Problem 1.97 (Koschorke) Given a link f = f1q . . .qfr : S1q . . .qS1 → R3, is its link
homotopy class [f ] completely determined by the (standard) homotopy class

κ[f ] := [f1 × . . .× fr] ∈ [(S1)r, C̃r(R3)]

(where C̃r(R3) denotes the space of ordered configurations of r pairwise distinct points in
R3).

Remarks: κ[f ] is trivial iff all µ-invariants of f are defined and vanish [604,Koschorke,1985;
page 128]. Hence the kernel of κ (in the set theoretic sense) is trivial (see [763,Milnor,1954,
Ann. of Math.; page 190]), but one does not know whether κ is injective in general.

Problem 1.98 (Eliashberg) A knot K in S3 is said to be transversal to the standard
contact structure on S3 if it is transverse to the plane field (which can be taken to be the
planes orthogonal to the Hopf fibration on S3). Let T be the transversal isotopy classes of
transversal knots, and let K be (smooth) isotopy classes of knots.

If K ∈ T , define its self linking, λ(K), to be the linking number λ(K,K ′) where K ′ is a
push off of K along the vector field lying in the plane field above (e.g.

√
−1 times the Hopf

vector field on S3 ⊂ C2). Thus if K is a Hopf fiber, λ(K) = −1.

Let F : T → K × Z be given by F (K) = (KTOP , λ(K)), where KTOP is merely the
isotopy class of K.
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(A) Is F injective?

Remarks: Yes if KTOP is the unknot [279,Eliashberg,1993] .

(B) What is the image of F?

Remarks: Any knot K is isotopic to a transversal knot, and putting a small kink in
K decreases λ(K) by 1, so the real question is, given K, what is

λ̄(K) = max{λ(K ′) | K ′ ∈ T ,K′T OP = K}?

The Bennequin [76,1983,Astérisque], and Kronheimer & Mrowka [623,1993,Topology],
[627,1995b,Topology] inequality is

λ̄(K) ≤ 2g(K) − 1

where g(K) is the minimal genus of a smooth surface in B4 whose boundary is K.
The inequality is exact for algebraic knots (this follows from the adjunction formula).
However, for the left-handed trefoil knot, g = 1 whereas for all known transversal
representations, λ(K) ≤ −4.

(C) Can any link of unknots be represented by a transversal link with all self-linking equal
to −1?

Problem 1.99 (Eliashberg) Are knot type, Bennequin number, and rotation number a set
of complete invariants for Legendrian knots in S3?

Remarks: A knotK is said to be Legendrian if its tangent vectors all lie in the contact plane
field. Push K off itself by pushing it slightly along the vector field normal to the contact
structure; the Bennequin number of K is the linking number between K and its pushoff.

Choose two linear independent vector fields on S3 which are tangent to the contact
structure. Then the tangent vector field to the knot can be though of in terms of this
trivialization as a map S1 → S1. The degree of this map is independent of the trivialization
and is called the rotation number, (sometimes the Maslov number), of the knot K. Notice
that the rotation number is an invariant of the oriented knot while the Bennequin number
of a knot K is independent of its orientation.

The answer is yes if K is the unknot [279,Eliashberg,1993]. A similar question for some
other contact 3-manifolds, for instance for the connected sum of 2 copies of S2 × S1, has a
negative answer [327,Fraser,1994].
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Problem 1.100 (Boileau & Rudolph) Let V ⊂ C2 be a smooth algebraic curve passing
through the origin. Consider Lt = V ∩ St where St ⊂ C2 is the sphere of radius t. Except
for a finite set of values of t where the intersection is not transverse, Lt is a smooth link
imbedded in St, and such links are called C-transverse links. Define the big genus of Lt
by bg(Lt) = min{genus(F )} where F is formed by gluing (along Lt) a planar surface to a
Seifert surface in St for Lt (see [126,Boileau & Weber,1983,L’Enseign. Math.]).

(A) Is the function t→ bg(Lt) non-decreasing?

Remarks: This is true for the smooth, 4-ball big genus by the proof of the local
Thom conjecture ([623,Kronheimer & Mrowka,1993,Topology] and [627,Kronheimer
& Mrowka,1995b,Topology], or [625,Kronheimer & Mrowka,1994b,Math. Res. Lett.]).

(B) If Lt is a trivial link for a given t, does it follow that Lt′ is a trivial link for t′ ≤ t.

Remarks: Of course (B) is a special case of (A). If Lt is a trivial knot, and Lt′ is a
knot with t′ ≤ t, then Lt′ is a trivial knot [403,Gordon,1981b,Math. Ann.]. Moreover,
by work of Eliashberg [280,1995], the complex disk V ∩Bt is trivially imbedded in Bt.

(C) Conjecture (Rudolph): Every C-transverse link is a quasipositive link (i.e. can be
realized as a quasipositive closed braid).

Remarks: A quasipositive closed braid is the closure of a braid which is the product
of conjugates of positive half twists (i.e. ωσiω−1 for some word ω and for a positive
half twist σi between strands i and i+ 1).

The proof of the local Thom conjecture [ibid.] shows that many knots are not C-
transverse, for example, the figure-8 knot, [960,Rudolph,1993,Bull. Amer. Math.
Soc.], some doubles, some pretzel knots, and some iterated torus knots [124,Boileau &
Rudolph,1995].

(D) Given V , there are only a finite number of topological types for the pairs (St, Lt). Do
they determine the topological type of the pair (C2, V )?

Remarks: Neumann [835,1989,Invent. Math.] showed that the link at infinity (the
pair (St, Lt) for t� 1) determines the pair (C2, V ) when V is regular at infinity (i.e. if
V = {(z1, z2) ∈ C2|f(z1, z2) = 0}, f = polynomial, then V is regular at infinity if there
exists ε ≥ 0, N ≥ 0 such that f |(f−1(D1(ε)) −D2(N)) is a C∞ fibration over D1(ε),
where Dk(r) is the ball of radius r in Rk). However if V is not regular at infinity, this
is no longer true [45,Artal-Bartolo,1993,L’Enseign. Math.] .

(E) If V is not regular at infinity, is the diffeomorphism type of V determined by the pairs
(St, Lt), or even just by the link at infinity?
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Remarks: The link at infinity determines the Euler characteristic of V , but this does
not suffice because V may not be connected (the number of components is not known)
[Neumann, ibid.].

Problem 1.101 (Rudolph) Consider germs of C∞ maps (R2, 0)
f
→ (R4, 0) with an isolated

singularity at the origin (i.e. the differential of f is of maximal rank except at the origin).

Question: What knot types can occur as the link of the singularity (i.e εS3 ∩ f(R2) for
a small sphere of radius ε) when f is the germ of a symplectic map? Of a Lagrangian map?

Remarks: A map is Lagrangian if the standard symplectic 2-form on R4 vanishes on the
image of the differential of f .

Problem 1.102 (Rudolph) Consider proper imbeddingsC f
→ C2. If f is polynomial, then

f(C) is C∞ unknotted. In fact, f is conjugate by a polynomial automorphism to a linear
map of C into C2, and the group of polynomial automorphisms is connected, so f is isotopic
through polynomial maps to the unknot ([1,Abhyankar & Moh,1975,J. Reine Angew. Math.]
for an algebraic proof, [955,Rudolph,1982,J. Reine Angew. Math.] for a knot-theoretical
proof, and [840,Neumann & Rudolph,1987,Math. Ann.] for the easiest proof).

(A) If f is an entire function, is the imbedding C∞ unknotted? Through entire imbeddings?

(B) If f is an entire imbedding of the open unit disk in C to C2, is the imbedding C∞

unknotted?

(C) If R2 f
→ R4 is a proper imbedding whose image S is a complete minimal surface (in the

differential geometric sense) in flat R4, is S topologically unknotted? C∞ unknotted?

Remarks: Complex analytic curves are minimal surfaces , so (C) is a proper generalization
of (A) and (B). The total curvature of an algebraic curve is finite, so (C) could be specialized
to include the hypothesis of finite total curvature.

There are C∞ ribbon imbeddings of R2 in R4 which are topologically unknotted but
smoothly knotted; this follows because the double cover of R4 branched along the ribbon R2

is an exotic R4 (the first such example is due to Freedman, and it and others appear in [395,
Gompf,1993,J. Differential Geom.]).

Can Hass’s theorem [454,1983,Math. Proc. Cambridge Philos. Soc.], that every ribbon
surface in B4 is isotopic to a minimal surface, be extended to proper ribbon imbeddings in
R4?
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Problem 1.103 Let D ⊂ B4 be the ribbon disk of a ribbon knot. Is B4 −D aspherical?

Remarks: Recall that an arcwise connected X is aspherical iff X is a K(π1(X), 1) iff
πn(X) = 0 for all n 6= 1. For a thorough discussion of these issues, see Bogley’s Chapter X
in [501,Hog-Angeloni, Metzler, & Sieradski,1993].

Problem 1.104 (Cochran) Is every link of two 2-spheres in S4 link homotopic to the
unlink?

Remarks: A link homotopy allows a component to intersect itself but no other components.

Problem 1.105 (Cochran & Melvin) Let S2 → S4 be a 2-knot K2. Every 2-knot is slice
(or null-concordant), i.e. the boundary of a smooth B3 imbedded in B5 [571,Kervaire,1965,
Bull. Soc. Math. France] (see Problem 1.56 for the question of whether 2-links are slice).

A 2-knot K2 is said to be a 0-slice knot if there exists a B3-slice whose intersections with
all spheres of radius r, rS4, r < 1, only consist of unions of 2-spheres. K2 is said to be k-slice
if k is the minimum over all B3-slices of the maximum genus of any component of (B3∩ rS4)
for r < 1. K2 is said to be k-null-bordant if k is minimized, as above, over all orientable
3-manifolds M3 in B5 with ∂M3 = K2.

(A) Question: Is every 2-knot 0-slice, or are there 1-slice 2-knots? Or even k-slice 2-knots
for each k ≥ 1?

(B) Same question with slice replaced by null-bordant.

Remarks: If K2 is k-slice and j-null-bordant, then obviously j ≤ k.

0-null-bordant 2-knots are particularly interesting because the Gluck construction on
such knots gives S4 [745,Melvin,1977] (see Problem 4.24).

Ribbon 2-knots are obviously 0-slice, where a ribbon 2-knot is one which bounds an
immersed B3 in S4 with singular set restricted analogously to the case of classical ribbon
knots, or equivalently, the ribbon 2-knot can be built in B5 from the unlink only by fusing
[1125,Yajima,1964,Osaka J. Math.]. Thus a 0-slice 2-knot is built from some 0-handles
by adding only 1-handles which reduce the number of components, and possibly 2- and
3-handles; whereas a ribbon 2-knot is the same but without any 2- or 3-handles.

It is known that there are 0-null-bordant 2-knots which are not ribbon [207,Cochran,
1983,J. London Math. Soc.].
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Chapter 2

Surfaces

• Problems 2.1–2.8 (1977), 2.9–2.20 (new).

• Mapping class group, 2.1, 2.2, 2.4, 2.9–2.15.

• Hyperbolic geometry, 2.6–2.7.

Introduction

The following problems use these definitions: Fg denotes a closed, orientable surface of
genus g, which bounds a handlebody Ng (= B3∪g 1-handles); given a surface S, its mapping
class group, ΓS, is the group of isotopy classes of orientation preserving homeomorphisms;
Γpg,q denotes the mapping class group of an oriented surface of genus g with p marked points
and q boundary components (diffeomorphisms modulo isotopies which fix each marked point
and fix each boundary point); Sp(2g,Z) is the group of 2g× 2g symplectic integer matrices;
λ : Γg → Sp(2g,Z) is the natural homomorphism mapping each element of Γg to its induced
automorphism on H1(Γg;Z); κg is the kernel of λ, and is called the Torelli group.

85
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Problem 2.1 (Birman) (A) Is κg finitely generated? (Conjecture: No.)

Remarks: It is known [888,Powell,1978,Proc. Amer. Math. Soc.] that κg is gener-
ated by isotopy classes of

(1) Dehn twists about separating curves, and

(2) if g ≥ 3, Dehn twists tct
−1
c′ about pairs c, c′, of homologous, disjoint, non-

separating curves.

(B) Is the subgroup of κg which is generated by maps of type (1) of finite index in κg for
any g ≥ 3? (For g = 2, it is the full group.)

Remarks: Chillingworth [201,1972,Math. Ann.; page 152] gives examples of homeo-
morphisms in κg not generated by type (1) maps.

Update: The Torelli group, κg, is finitely generated for g > 2 [546,Johnson,1983,Ann. of
Math.]. For g = 2, the Torelli group is infinitely generated [730,McCullough & Miller,1986b,
Topology Appl.] and is in fact freely generated by an infinite set of Dehn twists on separating
curves [752,Mess,1992,Topology].

The quotient of κg by the maps of type (1) is infinite for g > 2 and can be identified
with a quotient of the third exterior power of H1(Fg;Z) [547,Johnson,1985a,Topology]. The
group generated by maps of type (1) contains the commutator subgroup of the Torelli group
as a finite index subgroup [548,Johnson,1985b,Topology].

Problem 2.2 (Birman) Find explicit representations of κg or Mg which do not factor
through the homomorphism λ.

Remarks: Since Mg is residually finite [418,Grossman,1974,J. London Math. Soc.], such
representations surely exist. In particular, κg has nontrivial homomorphisms onto Z/2Z,
but these representations are not straightforward [91,Birman & Craggs,1978,Trans. Amer.
Math. Soc.].

Update: Jones–Witten theory in principle gives many such representations. Kohno [599,
1992,Topology], using [784,Moore & Seiberg,1989,Comm. Math. Phys.], gives many exam-
ples. Wright [1120,1994,J. Knot Theory Ramifications] calculated the Reshetikhin–Turaev
representation from Mg to PGL(n,C) for the root of unity eπi/2; this representation does
not factor through λ and, restricted to κg, is the direct sum of the Birman–Craggs homomor-
phisms. Johnson [545,Johnson,1980,Trans. Amer. Math. Soc.] had shown that the space
of Birman–Craggs homomorphisms spans the space of cubic polynomials on the Z/2Z-affine
space of spin structures on Fg.
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Problem 2.3 (D. Johnson) If h : Fg → Fg is a homeomorphism with h∗ = id on H1(Fg),
does h extend over some 3-manifold?

Remarks: For g = 1, h extends iff trace h∗ = 2 iff h∗ is conjugate to ( 1
k

0
1
) iff h is conjugate

to a k-fold Dehn twist around some curve.

Update: In general, h does not extend over some 3-manifold. After earlier work of Casson,
D. Johnson, Johannson, Scharlemann (and perhaps others), the definitive treatment is [128,
Bonahon,1983a,Ann. Sci. École Norm. Sup. (4)].

Problem 2.4 (Birman) Let α be the obvious homomorphism

Ng
α−→ Aut(π1(Ng))

where Ng is the group of isotopy classes of orientation preserving homeomorphisms of Ng .

Is kernel(α) finitely generated? (Conjecture: No.)

Remarks: Ng is known to be finitely generated [1023,Suzuki,1977,Canad. J. Math]. E.
Luft has proved that kernel(α) is generated by Dehn twists on properly imbedded 2-balls in
Ng.

Update: The answer is no for a genus two handlebody [616,Kramer,1983], and for all
handlebodies of genus > 1 [725,McCullough,1985,Topology].

Problem 2.5 (Birman) (A) Suppose that Fg is imbedded in S3 as a Heegaard surface,
with S3 = U ∪ V and U ∩ V = Fg. Let A (resp. B) be the subgroup of Mg of maps
which extend over U (resp. V ). Let C be the centralizer of A ∩ B in A.

Can we express every element α ∈ A as α = γδ where γ ∈ C and δ ∈ A ∩B?

(B) Suppose P , P ′ ⊂ A ∩ B have finite order p. Suppose also that P ′ = αPα−1 = βPβ−1

for some α ∈ A, β ∈ B.

Conjecture: There exists δ ∈ A ∩ B such that P ′ = δPδ−1.

Remarks: The conjecture is true for p = 2. A positive answer for any p ≥ 3 would imply
the Smith conjecture (see Problem 3.28) for period p (Birman). Note that an affirmative
answer to part (A) would imply an affirmative answer to the conjecture for every p.

Update:
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(A) The answer is no for genus > 2 because then the centralizer is trivial.

(B) Interest has died now that the Smith conjecture has been proved.

Problem 2.6 (Thurston) Can the group of symmetries of π1(F ) = π1(Fg) be represented
geometrically as a group of homeomorphisms of F? More precisely, since

π0(HomeoF ) ∼= Aut(π1F )/InnAut(π1F ) = OutAut(π1F ),

is there a right inverse σ for π0:

Remarks: If we replace F by its unit tangent bundle TF , this geometric representation is
possible, i.e., there is a natural representation π0(Homeo(F )) → Homeo(TF ) (consider the
Cheeger homeomorphism in [412,Gromov,1975]).

The problem is also interesting (and well known) for subgroups (particularly finite) of
π0(Homeo(F )). It is known for solvable, finite groups and for infinite groups with two ends.

Update: For an oriented, closed surface Fg, the map π0 : Diff(Fg) → π0(Diff(Fg)) = Mg

does not have an inverse σ (at least if g ≥ 86) [802,Morita,1987,Invent. Math.], but for
any finite group inMg, there is an inverse σ [570,Kerckhoff,1983,Ann. of Math.]. For the
case of Homeo(Fg), Morita’s proof does not apply, but the existence of an inverse σ seems
unlikely.

Problem 2.7 (Thurston) Characterize the subgroups of π0(Diff(F )) which act as transla-
tions of some complex geodesic in Teichmüller space.

Update: It is known by work of Masur [705,1986,Duke Math. J.] that these subgroups
can’t act cocompactly on the complex geodesic. This together with the fact that there is a
bound on the orders of finite elements in the mapping class group implies that these groups
are virtually free. It is still not known if they are necessarily finitely generated.

Thurston gave examples in which each of the pseudo–Anosov elements in the subgroup
has a stretching factor which is a quadratic integer, and such that the group is commensurable
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with PSL(2,Z) as a group of isometries of the hyperbolic plane (see Exposé 13 in [296,Fathi,
Laudenbach, & Poénaru,1979]. Veech found examples which are not commensurable with
PSL(2,Z), but are lattices in PSL(2,R) [1073,Veech,1989,Invent. Math.] (for further work
concerning these examples, see [1074,Veech,1992,Geom. Funct. Anal.] and [453,Harvey,
1993]). Smillie [1006,1995] showed that the group of translations of a complex geodesic is a
lattice in PSL(2,R) if and only if the image of the geodesic in moduli space is a closed set.

Also, for an analysis of parabolic elements which stabilize Teichmüller discs, see [992,
Shiga & Tanigawa,1989,Kodai Math. J.], and for the definitive answer to this aspect of
the question, see [264,Earle & Sipe,1995] and [715,Matsumoto & Montesinos-Amilibia,1994,
Bull. Amer. Math. Soc.].

Problem 2.8 (Meeks) For what genus g does every periodic diffeomorphism h : Fg → Fg
have an invariant circle?

Remarks: Yes for g ≤ 10, no for g = 11, yes for some g > 11, and no for an infinite number
of g. For g = 11, there is essentially one diffeomorphism h, of order 30, with no invariant
circle [740,Meeks, III,1979,J. Differential Geom.].

Update: Still open.

NEW PROBLEMS

Problem 2.9 (Mess) (A) Find a finite presentation for the Torelli group, κg, g ≥ 3.

(B) Given g, what is the largest k for which κg admits a classifying space with finite k-
skeleton.

Remarks: Perhaps (Vogtman) k = g− 2 so the Torelli groups is only finitely presented for
g ≥ 4. This guess is supported by analogy with the behavior of S-arithmetic groups and
solvable groups, as investigated by H. Abels, R. Bieri, R. Strebel and others.

As in the Update to Problem 2.1, κ1 is trivial, κ2 is infinitely generated [730,McCullough
& Miller,1986b,Topology Appl.] and in fact free on infinitely many generators [752,Mess,
1992,Topology], and κg, g ≥ 3, is finitely generated [546,Johnson,1983,Ann. of Math.]. κ3

does not have a classifying space with finite 3-skeleton, as shown by Mess expanding on a
result of Johnson & Millson.

Problem 2.10 (Congruence Subgroup Conjecture) Every subgroup of finite index of
ΓS contains a congruence subgroup, where S is a compact, orientable surface, perhaps with
boundary.
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Remarks: Using the analogy between mapping class groups and arithmetic groups (see
[530,Ivanov,1987b,Uspehi Mat. Nauk] for a discussion) as a guide, define a congruence
subgroup of ΓS as follows: first recall that a subgroup H of a group G is called characteristic
if it is invariant under all automorphisms of G. If H is a characteristic subgroup of π1(Fg)
of finite index, then the kernel KH of the homomorphism Out(π1(Fg)) → Out(π1(Fg)/H)
is a subgroup of ΓS of finite index. The subgroups KH which arise from subgroups H are
called congruence subgroups. Note that since π1(Fg) is finitely generated, every subgroup H ′

of π1(Fg) of finite index contains a characteristic subgroup of finite index.

Problem 2.11 (Ivanov) (A) Is it true that H1(G) = 0 for any subgroup G of finite index
in ΓS ?

Remarks: It is known that H1(ΓS) = 0. ΓS is residually finite [418,Grossman,1974,
J. London Math. Soc.] (also exercise 1 in [532,Ivanov,1992]), so there are many
subgroups of finite index which are not well understood.

(B) Does ΓS satisfy Kazhdan’s property T?

Remarks: A positive answer to (B) implies the same for (A). A good reference for property
T is [237,de la Harpe & Valette,1989,Astérisque], but the definition is technical and is not
included here.

Problem 2.12 (A) (Penner) Is it possible that all nontrivial (i.e. 6= 1) elements of a
normal subgroup of ΓS are pseudo–Anosov diffeomorphisms?

Remarks: Of course, conjugates and powers of pseudo–Anosovs are also pseudo–
Anosov, but the product of two is not in general. It is known how to find big free
subgroups consisting entirely of pseudo–Anosov elements, but not how to find one
which is also normal.

(B) (Ivanov) If the subgroup H of π1(S) is characteristic, then the kernel of the natural
homomorphism

ΓS = Out(π1(S))→ Out(π1(S)/H)

is a normal subgroup. Call the class of normal subgroups of ΓS that arise by this
construction C.

Question: Is it true that any normal subgroup of ΓS is commensurable with a normal
subgroup in C?

Remarks: In general the subgroups in C have infinite index, e.g. the Torelli group
which is the subgroup of ΓS which acts trivially on H1(S).
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Problem 2.13 (Mess) In the mapping class group Γg, g ≥ 3, of a closed surface of genus
g, a Dehn twist τ on a non-separating curve is a product of 3 commutators (by the lantern
relationship [888,Powell,1978,Proc. Amer. Math. Soc.]).

(A) Is 3 the minimum possible?

(B) What is the genus of τn as a function of n, where the genus is the number of commu-
tators needed to express τn?

(C) For genus 2, the abelianization of the mapping class group Γg is Z/10Z, generated by
τ . So τ 10k is a product of commutators; how many as a function of k?

(D) What is the genus of a Dehn twist about a separating curve on a surface of genus at least
3? This might depend on the genus of the surface bounded by the separating curve (on
a genus 2 surface, a Dehn twist on a separating curve has order 5 in the first homology
group).

Problem 2.14 (Mess) Suppose there is an inclusion of π1(Fg), g ≥ 2, into a mapping
class group Γ1

h of a one pointed surface of genus h. Is it ever the case that this inclusion
lifts to Γh,1, the mapping class group of a surface of genus h with one boundary component
(diffeomorphisms modulo isotopies which fix the boundary)?

Remarks: One way to construct inclusions of π1(Fg) into the mapping class group is to
consider a fixed complex structure on a surface H of genus g′, and the family of hyperbolic
orbifolds obtained by making a point of H into a cone point of order n. Holding n fixed and
varying the point, one obtains a π1-injective inclusion of H into the moduli space M1

g′ of
hyperbolic orbifolds with genus g′ and one cone point of order n. A finite cover of H is then
included π1-injectively (in the sense appropriate to the orbifoldM1

g′) in the moduli space of
surfaces of genus g, where the surface of genus g is a finite cover (in the sense of orbifolds)
of the orbifold of genus g′ with one cone point of order n. (The resulting imbedding of the
unit disc into Teichmüller space is not a Teichmüller geodesic.)

If the answer to the problem is yes, i.e. the inclusion lifts to Γh,1, then π1(Fg)× π1(Fg)
is a subgroup of Γ2h. The converse was proved in [754,Mess,1995b].

Problem 2.15 (Ivanov) (A) Conjecture (Mostow–Margulis superrigidity): If G is
an irreducible arithmetic group of rank≥ 2, then any homomorphismG→ ΓS has finite
image.

Remarks: This is true for many arithmetic groups. An interesting open case is that
of cocompact lattices in SU(p, q) (G. Prasad).
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By a deep result of Margulis [695,Margulis,1991] about finiteness of quotient groups
of lattices, this conjecture is essentially equivalent to the following:

(B) Conjecture: Irreducible lattices in isometry groups of symmetric spaces of R-rank ≥ 2
never occur as subgroups of mapping class groups.

Remarks: A lattice Γ in a Lie groupG is a discrete subgroup such thatG/Γ has finite volume
with respect to Haar measure. Both non-cocompact and cocompact lattices in PSL(2,R)
do occur in mapping class groups of surfaces of sufficiently large genus by the remark to the
previous problem. The space SL(n,R)/SOn(R) of shapes of ellipsoids is a symmetric space
of R− rank ≥ 2 when n ≥ 3, and is a typical example. A reducible lattice is one that has a
finite index subgroup which is a direct product of two infinite subgroups, and an irreducible
lattice is one that is not reducible. There are reducible lattices which act on the product of
two copies of the hyperbolic plane, and there are also irreducible lattices, e.g. PSL(2,Z[

√
2])

which do so.

If such lattices occurred as subgroups of the mapping class groups, one would expect a
holomorphic map of the symmetric space to the Teichmüller space of the surface, and these
are not expected.

[Margulis, ibid.] is the definitive treatment of lattices.

Problem 2.16 (Ivanov) Let dW ( , ) be the word metric on ΓS with respect to some given
finite set of generators and let τ ∈ ΓS be a Dehn twist. What is the growth rate of dW (tn, 1)?

Remarks: It is expected that either the growth rate is linear, or dW (tn, 1) = O(log n). In
the arithmetic groups case, logarithmic growth corresponds to virtually unipotent elements
of arithmetic groups of rank ≥ 2 [680,Lubotzky, Moses, & Raghunathan,1993,C.R. Acad.
Sci. Paris Sér. I Math.].

Problem 2.17 (Mess) Consider surface bundles over surfaces where both fiber F and base
B have genus ≥ 2 and where π1(B) injects in the mapping class group of the fiber. Does
such a bundle have a multisection (a submanifold which finitely covers the base)?

Remarks: One can construct such bundles as follows: Take a surface F and consider the
bundle of pointed surfaces F × F with fiber over p equal to (F, p). Turn this into a bundle
of orbifolds where the fiber over p is F with a cone point of order n at p. This 4-dimensional
orbifold has a finite orbifold cover which is a fiber bundle of surfaces as desired.
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Problem 2.18 (Mess) (A) Let E be a surface bundle over a surface, with base Fg a closed,
oriented surface of genus g and fiber Fg′. What is the minimum g for which σ(E) 6= 0?

Remarks: There is an example for g = 129 [50,Atiyah,1969], and this can be lowered
(Mess) to g = 42 using Wajnryb’s presentation of the mapping class group [1083,Wajn-
ryb,1983,Israel J. Math.]. σ(E) = 0 if g′ < 3 because the second rational cohomology
of the mapping class group vanishes for genus < 3.

(B) Let g(n) be the least genus for which σ(E) = 4n. The limn→∞
g(n)
n

exists, is finite, and
is non-zero. What is the limit?

Remarks: Since g(m+n) ≤ g(m)+g(n) by the obvious construction, the existence of
the limit follows from a standard elementary analysis result. [67,Barge & Ghys,1992,
Math. Ann.] may be useful.

Note that the same two questions can be asked when E is restricted to be a complex
bundle.

Problem 2.19 (Cooper & Mess) Does every torsion free 3-manifold group act faithfully
by homeomorphisms of R2?

Remarks: The binary polyhedral groups do not act because of the theorem of Kerékjártó
and Eilenberg ([1081,von Kerékjártó,1934b,Acta Sci. Math. (Szeged)], [1080,von Kerékjártó,
1934a,Acta Sci. Math. (Szeged)], and [275,Eilenberg,1934,Fund. Math.]) that a finite order
homeomorphism of R2 is conjugate to a rotation or a reflection, and therefore the only finite
groups that act faithfully are cyclic or dihedral.

The free abelian group of rank 2 acts faithfully on the unit disc, acting as the identity on
the boundary. It follows that that a semidirect product with normal subgroup free abelian of
rank 2 and infinite cyclic quotient acts faithfully on the plane, setwise preserving a collection
of disjoint discs, one centered at each integral point.

For a different sort of action, the fundamental group G of a Solv manifold imbeds as a
subgroup of the direct product of two copies of the ax+ b group of affine motions of the line,
and it follows easily that G acts on R2, leaving the region ‖x‖ ≥ ‖y‖ pointwise fixed, and
preserving each of the line segments y = c, ‖x‖ ≤ c.

The full automorphism group of a surface of negative Euler characteristic acts faithfully
on the circle; and therefore so do its subgroups, which include the fundamental groups of
all 3-manifolds which fiber over the circle with fiber of negative Euler characteristic but are
not mapping tori of finite order diffeomorphisms. Groups which act effectively on the circle
extend radially to groups which act on the plane. So in particular many fundamental groups
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of compact hyperbolic 3-manifolds act effectively on the plane. Suppose F is a hyperbolic
surface and f : F → F is a finite order diffeomorphism. Then the mapping torus of f is
a 3-manifold Mf with fundamental group a semidirect product G = 〈f〉 n π1F , and the
quotient of G by its center acts effectively on the circle. Although G does not act effectively
on the circle in any natural way, G does act effectively on the plane, preserving the foliation
by concentric circles centered at the origin. So the fundamental groups of all 3-manifolds
which are fiber bundles over the circle act effectively on the plane, and the argument extends
to Stallings fibrations, i.e. 3-manifolds which are bundles over the unit interval regarded as
an orbifold with two exceptional points.

Suppose M is a Seifert fibered space with hyperbolic base and a fiberwise orientation.
Does π1M act on the plane preserving the (singular) foliation by rays through the origin and
inducing some action of the orbifold fundamental group of the base orbifold on the circle of
directions?

For Seifert fibered spaces with hyperbolic base for which the Euler class is not too large
and satisfies additional conditions when the base orbifold has cone points, there is an action
of the fundamental group on R. This result of R. Naimi [825,1994,Comment. Math. Helv.]
is the culmination of a series of papers by J. Milnor, J. Wood, D. Eisenbud, U. Hirsch, M.
Jankins and W.D. Neumann. Evidently a group that acts effectively onR also acts effectively
on R2.

One would expect that if two groups act effectively on R2 their free product would also
act effectively on R2. If so one could reduce to the case of prime 3-manifolds.

Problem 2.20 (Lima) Are there commuting homeomorphisms of the 2-ball B2 without a
common fixed point ?

Remarks: Two commuting C1 vector fields on a surface of non-zero Euler characteristic
have a common singularity [657,Lima,1963,Bull. Amer. Math. Soc.], [658,Lima,1964a,
Comment. Math. Helv.], [659,Lima,1964b,Proc. Amer. Math. Soc.]. The equivalent
problem for diffeomorphisms has a negative answer. One can easily see that, for example,
two rotations by π on orthogonal axes of the sphere S2 commute and have no common fixed
points. But if two diffeomorphisms of S2 are C1-close enough to the identity map then they
have a common fixed point [133,Bonatti,1989,Ann. of Math.], answering a question posed
in [938,Rosenberg,1974]. Handel [437,1992,Topology], following a suggestion of Mather,
defined the winding number of two commuting homeomorphisms φ, ψ : S2 7−→ S2 as the
class:

W (φ, ψ) = [Ht] ∈ π1(Homeo+(S2)) ∼= Z/2Z,
where φt and ψt are isotopies between φ and ψ and the identity map, and Ht is the closed
path in Homeo+(S2) defined by the isotopy Ht = φtψtφ

−1
t ψ−1

t . Then he proved that two
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commuting diffeomorphisms with W (φ, ψ) = 0 have a common fixed point, extending Bo-
natti’s result. If φ and ψ are only homeomorphisms, Handel’s result can still guarantee the
common fixed point under the additional hypothesis that the fixed point set of each map is
finite.

The problem is still open for homeomorphisms of S2 in general, as well as the original
question posed by Rosenberg, [938,1974; page 305]:

Question: Let M be a closed manifold with non-zero Euler characteristic and φ and ψ
commuting diffeomorphisms close to the identity map; must they have a common fixed point?
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Chapter 3

3-Manifolds

• Problems 3.1–3.44 (1977), 3.45–3.113 (new).

• Classification 3.1–3.10, 3.45, 3.46, 3.52, 3.82, 3.84.

• Surfaces in 3-manifolds, 3.10–3.12, 3.17–3.19, 3.50, 3.66–3.69, 3.83, 3.96–3.99, 5.6.

• Covers and branched covers, 3.24–3.26, 3.50, 3.51.

• Links of singularities, 3.27–3.31.

• 3-Manifold groups, 3.32, 3.33, 3.74–3.79, 3.104, 3.105.

• Group actions, 3.37–3.44, 3.70–3.73.

• Hyperbolic and other geometries, 3.14, 3.15, 3.45–3.69.

• Diffeomorphism and isometry groups, 3.34–3.39, 3.47–3.49.

• Algorithms, 3.80–3.83.

• Heegaard splittings, 3.85–3.94 (also 1.72, 1.73).

• Surgery and framed links, 3.101–3.104, (also 1.77–1.82).

• Flows, 3.110–3.113.

• Topological quantum field theories (TQFT’s), 3.106–3.108, (also, 1.88–1.92, 5.19–5.20).
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Introduction

A 3-manifold M is irreducible if every smoothly imbedded S2 bounds a B3 in M , and
is P 2–irreducible if it is irreducible and contains no 2-sided real projective plane RP2. M is
prime if M = M1#M2 implies either M1 or M2 is S3.

M is said to be Haken if it is P 2–irreducible and contains a smooth, properly imbedded,
2-sided surface F which does not satisfy any of the following three conditions:

(1) there exists a compressing disk D for F , i.e. a smoothly imbedded B2 such that
D ∩ F = ∂D and ∂D is not contractible in F ;

(2) F = S2 and bounds a homotopy 3-ball in M ;

(3) F = B2 and there is a homotopy 3-ball B0 such that ∂B0 ⊂ F ∪ ∂M .

Such a surface F is called incompressible, and a 3-manifold with an incompressible surface
was called sufficiently large, but Haken is the modern term used for 3-manifolds which are
irreducible and sufficiently large.

M3 is called atoroidal if:

• (geometric definition) M contains no essential, properly imbedded, nonperipheral an-
nulus or torus;

• (algebraic definition) each Z ⊕ Z in π1(M) is conjugate to a subgroup in π1(∂M).

The algebraic definition implies the geometric definition (clearly M contains no torus,
but if M contains a nonperipheral annulus, then there is a Z in the center of π1(M), so (see
Problem 3.5) M is a Seifert fibered space and these contain Z⊕Z’s). However, the problems
often do not specify which kink of atoroidal is meant; in this case, the intent of the author
may be clear, or there are two versions of the problem.

Suppose M3 is compact, orientable, irreducible and ∂M is incompressible. Then [538,
Jaco & Shalen,1979], [542,Johannson,1979], M has a finite family of disjoint, incompressible,
2-sided, imbedded tori which split M into pieces which are either Seifert fibered spaces or
algebraically atoroidal; furthermore, a minimal such family is unique up to isotopy. For
further details, the non-orientable case, and relations with the Geometrization Conjecture
3.45, see Scott’s survey [979,1983a,Bull. London Math. Soc.].

The definitions of geometric 3-manifold and of orbifold are given in Problems 3.45 and
3.46.
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Problem 3.1 Poincaré Conjecture: Every homotopy 3-sphere Σ3 is homeomorphic to
S3.

Here are some presumably easier conjectures:

(A) The suspension of Σ3 is homeomorphic to S4.

Remarks: The double suspension is S5 [995,Siebenmann,1970] .

(B) (Σ3 − point)× R is diffeomorphic to R4.

(C) (Poénaru) There exist two contractible open subsets, U1 and U2, of Σ3 such that Σ3 =
U1 ∪ U2 and U1 and U2 are imbeddable in R3 (see [881,Poénaru,1974,Bull. Amer.
Math. Soc.]). (Added in proof. This is equivalent to the Poincaré conjecture [738,
McMillan, Jr.,1970,Bull. Amer. Math. Soc.].)

(D) Σ3 imbeds (smoothly?) in S4. This implies the next two:

(D′) Σ3 bounds a contractible 4-manifold, and, if the imbedding is smooth,

(D′′) Σ3 does not bound a smooth, almost parallelizable 4-manifold of signature 8 mod
16.

(E) If Σ3 admits an involution (and is irreducible), then Σ3 is S3.

(F) The connected binding of some open book decomposition (Problem 3.13) of Σ3 lies in a
3-ball. (This is equivalent to the Poincaré conjecture.)

Furthermore, the Poincaré Conjecture generalizes to

(Ω) Simple homotopy equivalent, closed, orientable, 3-manifolds are homeomorphic.

Remarks: This is known for irreducible, sufficiently large manifolds [1088,Waldhausen,
1968b,Ann. of Math.], and for lens spaces [220,Cohen,1973].

Update: The Poincaré conjecture is still open (presumably, as there exist manuscripts which
could contain a proof) (also see Problem 4.88).

(A) True by [329,Freedman,1982,J. Differential Geom.], for Σ×R is homeomorphic to S3×
R, so the suspension is a manifold homotopy equivalent to S4, and thus homeomorphic
to it.
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(B) Still open, but (Σ3-point) ×R is homeomorphic to R4 [329,Freedman,1982,J. Differen-
tial Geom.]. If (B) is true, then no exotic R4 is diffeomorphic to a 3-manifold ×R;
McMillan [736,1961,Bull. Amer. Math. Soc.] (also [386,Glimm,1960,Bull. Soc.
Math. France]) proves that a Whitehead manifold ×R is diffeomorphic to R4.

(C) No progress, but compare McMillan’s result with Problem 4.89, last remark.

(D) Σ3 imbeds (locally flat) in S4 and thus bounds a TOP contractible 4-manifold (as do
all homology 3-spheres [Freedman, ibid.]. (D′′) was proven by Casson who showed that
a homotopy 3-sphere has Rohlin invariant zero [30,Akbulut & McCarthy,1990].

(E) True if the fixed point set is 1-dimensional and hence a knot, using the proof of the
Smith Conjecture (see Problem 3.38). A 2-dimensional fixed point set, a 2-sphere, is
not possible because of irreducibility, and the cases of 0-dimensional or empty fixed
point set are open.

(F) No progress.

The Poincaré conjecture is a special case of the Geometrization Conjecture (see Prob-
lem 3.45).

Problem 3.2 Let M3 be a closed, orientable, irreducible 3-manifold with infinite funda-
mental group. If M3 is not sufficiently large, must it have a finite cover which is sufficiently
large?

Update: The question is still open. Note that covers of irreducible 3-manifolds are irre-
ducible [744,Meeks, III & Yau,1982,Topology]. If the cover of M3 is Haken (equals irre-
ducible and sufficiently large), then it must be hyperbolic (or one of the rare cases in which a
Seifert fibered 3-manifold covers a small non-Haken Seifert fibered 3-manifold); this follows
from Thurston’s geometrization theorem for Haken manifolds plus the fact that there are no
characteristic tori (for otherwise they could be chosen equivariantly and would then descend
to the quotient).

If M has a finite cover N with rank H1(N ;Z) > 0, then M is called virtually Z-
representable or has virtually positive first Betti number; with irreducibility this implies
M is virtually Haken. In the following list, M (as above) is virtually Z-representable if it
satisfies:

• M is Seifert fibered, for then it has a finite cover which is a circle bundle over an
orientable surface.
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• M is hyperbolic and has an immersed, totally geodesic surface [674,Long,1987,Bull.
London Math. Soc.].

• M is obtained by certain gluings of regular hyperbolic polyhedra [848,Nicas & Stark,
1984,Math. Proc. Cambridge Philos. Soc.] and [849,Nicas & Stark,1987].

• M is a quotient of H3 by certain cocompact, arithmetic subgroups of SL(2,C) [206,
Clozel,1987,Duke Math. J.].

• M has an orientation reversing involution and also some finite cover [1098,Wang,1990,
Proc. Amer. Math. Soc.].

• M is obtained by certain surgeries on the figure-8 knot [847,Nicas,1986,Math. Proc.
Cambridge Philos. Soc.], [801,Morita,1986,Sci. Papers College Arts Sci. Univ. Tokyo],
[601,Kojima & Long,1988], and [60,Baker,1991,Pacific J. Math.].

• M is one of certain branched covers over links in S3 [477,Hempel,1990,Topology].

• M is a certain Dehn filling of a punctured surface bundle [473,Hempel,1986,Topol-
ogy Appl.], [474,Hempel,1987a,Topology Appl.], [58,Baker,1989,Proc. Amer. Math.
Soc.], [59,Baker,1990,Proc. Amer. Math. Soc.], and unpublished work of Brun-
ner, Neumann & Rubinstein mentioned in [14,Aitchison & Rubinstein,1993,J. Austral.
Math. Soc. Ser. A].

Related to the above is the preprint [953,Rubinstein & Wang,1995] which gives the first
example of an immersed incompressible surface which does not lift to an imbedding in any
finite sheeted covering.

Problem 3.3 (Jaco) Let M3 be a compact 3-manifold. Are there at most a finite number
of homotopy equivalent 3-manifolds? What if we restrict to the case where M is orientable
and sufficiently large? (See [537,Jaco & Shalen,1976,Invent. Math.].)

Update: M3 should be assumed to be irreducible to avoid possible fake 3-balls. Yes,
for Haken 3-manifolds [1027,Swarup,1980,Bull. London Math. Soc.], for aspherical Seifert
fibered spaces [980,Scott,1983b,Ann. of Math.], and for all closed, hyperbolic 3-manifolds
satisfying Gabai’s thick geodesic condition [361,Gabai,1995a]. The question is still open
for closed non-Haken 3-manifolds (see Problem 3.45). Johannson has classified homotopy
equivalences of 3-manifolds with non-empty boundary [542,Johannson,1979].

Problem 3.4 (Stallings) Is an irreducible h-cobordism from RP2 to itself a product?
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Remarks: This is known if its double cover is S2×I [669,Livesay,1963,Ann. of Math.] and
[947,Rubinstein,1976,Proc. Amer. Math. Soc.]. The open case is also unknown: Is a proper
homotopy RP2 × R homeomorphic to RP2 × R (assume irreducibility of the manifold)? An
affirmative answer implies that every topological involution of S3 with two fixed points is
standard.

Update: Still open. But note that a smooth or PL involution of S3 is standard [Livesay,
ibid.] and the topological case follows using a result in [492,Hirsch & Smale,1959,Amer. J.
Math.],

Problem 3.5 Suppose M3 is irreducible and π1M
3 is infinite with nontrivial center.

(A) (Thurston) Is M3 a Seifert fibered space?

Remarks: Yes if M is sufficiently large [1086,Waldhausen,1967c,Topology]. If yes
in general, then we get an affirmative answer to Problem 2.6 for finite groups. For
let G be a finite subgroup of π0(HomeoF 2). G acts freely on the unit tangent space
TF 2 with quotient space M3 satisfying the conditions above. If M3 is a Seifert fibered
space, there is a natural, regular, branched covering of its base space with G as the
group of deck transformations; the branched covering space is F 2.

(B) (Jaco) Is the center of π1M
3 finitely generated?

Remarks: Yes, if π1M
3 contains a (closed) surface group.

Update: P. Scott [980,1983b,Ann. of Math.] reduced 3.5A to showing that M3 is homotopy
equivalent to a Seifert fibered space. Mess [753,1995a] showed that either

• M was homotopy equivalent to a Seifert fibered space with Euclidean base orbifold,

or

• the quotient of π1(M) by the center acted on a circle at infinity as a convergence group;
in this case it sufficed to show that the convergence group was Fuchsian.

As a byproduct, Mess showed (B), that the center of π1(M) was finitely generated and
therefore (by a theorem of D. B. A. Epstein [283,1961,Proc. London Math. Soc.]) was free
abelian of rank 1, 2, or 3 (except if M is non-orientable when Z ⊕ Z/2Z is possible). (If
∂M contains no 2-spheres and M is compact with no fake 3-balls, then in the rank 3 case,
M = T 3, and for rank 2, M is an I-bundle over T 2 or one of 3 different quotients of T 3 (see
[472,Hempel,1976])).



103

Tukia [1067,1988,J. Reine Angew. Math.] showed that convergence groups on the circle
are conjugate to Fuchsian groups except perhaps in a special case, which is in fact the heart
of the problem. The special case was established by Gabai [358,1992,Ann. of Math.] and
by Casson & Jungreis [190,1994,Invent. Math.]. Thus (A) is true.

Problem 3.6 (A) Is the homology 3-sphere obtained by ±1-surgery on a knot always prime?

(B) If so, do they all have finite covers which are either sufficiently large or S3?

Remarks: This is a special case of Problem 3.2 if π1 is infinite.

(C) Find a prime homology 3-sphere which is not obtained by ±1-surgery on a knot. Who
knows a nonprime example which is not?

(D) (B. Clark) Is there a homology 3-sphere (or any 3-manifold) which can be obtained by
n-surgery on an infinite number of distinct knots?

Remarks: Lickorish gave an example obtained from two knots [652,1977,Proc. Amer.
Math. Soc.]. Problems 1.15 and 1.16 ask whether this is possible for S3 (Property P)
or S1×S2 (Property R). It seems likely that the Poincaré homology sphere can be ob-
tained only from +1-surgery on the right-handed trefoil knot (or, reversing orientation,
from -1-surgery on the left-handed trefoil knot).

Update:

(A) Any surgery on a knot giving a homology 3-sphere always gives a prime one [405,Gordon
& Luecke,1989,J. Amer. Math. Soc.].

(B) See Update for Problem 3.2.

(C) Auckly [52,1993] has given examples using Taubes’ periodic ends theorem.

(D) Still open (but see Problem 3.102).

Problem 3.7 Let M3 be a closed, irreducible 3-manifold with infinite fundamental group
(hence a K(π, 1)).

(A) Is the universal cover always R3?

(B) Does the universal cover always imbed in R3?

(C) Is the universal cover always simply connected at infinity?
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Remarks: Yes for (A) if M or some finite cover is irreducible and sufficiently large [1088,
Waldhausen,1968b,Ann. of Math.]. Yes for (B) and (C) implies yes for (A).

Update: Still open. (The hypothesis should include P 2-irreducible or orientable.) But yes
for (C) alone implies yes for (A) because the universal cover is irreducible [742,Meeks, III,
Simon, & Yau,1982,Ann. of Math.].

(A) is true if

• M has a foliation without Reeb components [868,Palmeira,1978,Ann. of Math.], or

• M has an essential lamination [364,Gabai & Oertel,1989,Ann. of Math.], or

• the universal cover of M is end 1-movable [148,Brin & Thickstun,1987,Topology],
where end 1-movable means the following: an exhaustion of M is a nested sequence
K0 ⊂ int(K1) ⊂ K1 ⊂ int(K2) · · · of compact sets (which may as well be connected
submanifolds) whose union is M ; M is end 1-movable if for each i there is a j > i such
that for all k > j, every loop in M −Kj homotops freely through M −Ki into M−Kk

(this is a proper homotopy invariant), or

• the universal cover of M is eventually end irreducible [1119,Wright,1992,Topology],
where eventually end irreducible means that M has an exhaustion (as above) for which
each ∂Ki, i > 0, is incompressible in M −K0.

Whether or not (A) is true depends only on π1(M) (this well known fact can be found in
[Brin & Thickstun, ibid.], whereas the fact that (C) only depends on π1(M) is due to [533,
Jackson,1981,Topology]). Then (C) is true when

• π1(M) is negatively curved [84,Bestvina & Mess,1991,J. Amer. Math. Soc.] and,
somewhat more generally,[372,Gersten & Stallings,1991,Internat. J. Algebra Comput.]
(with an improvement in [884,Poénaru,1994,Topology]),

• contains the fundamental group of a closed, hyperbolic surface, or torus, or Klein bottle
[459,Hass, Rubinstein, & Scott,1989,J. Differential Geom.],

• has non-trivial center [754,Mess,1995b] ((C) is true in this case by [Jackson, ibid.])

• is almost convex [883,Poénaru,1992,J. Differential Geom.] (also see [882,Poénaru,
1991,Duke Math. J.] and [885,Poénaru & Tanasi,1993,Geom. Dedicata]),

• is quasi-simply-filtered [147,Brick & Mihalik,1995] and [760,Mihalik & Tschantz,1995],
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• or is a subgroup of finite index in a Coxeter group [758,Mihalik,1995a].

In a different direction, define a Whitehead manifold to be an irreducible, contractible,
open 3-manifold which is not R3; these are all monotone unions of handlebodies (0− and
1−handles) [736,McMillan, Jr.,1961,Bull. Amer. Math. Soc.]. Then no Whitehead mani-
fold can non-trivially cover any 3-manifold when the handlebodies all have genus one [824,
Myers,1988,Topology], or have bounded genus [Wright, ibid.] (which implies eventually end
irreducible).

Problem 3.8 (Jaco) A manifold M is said to have a manifold compactification if there
exist a compact manifold N and an imbedding ϕ : M → N with ϕ(intM) = intN . Let
M(G) be the unique covering space determined by the conjugacy class of a subgroup G of
π1(M).

Question: If M is a compact, P 2-irreducible, 3-manifold and G is a finitely generated
subgroup, then does M(G) admit a manifold compactification?

Remarks: The answer is yes for compact, irreducible, orientable, sufficiently large 3-
manifolds iff it is true for a surface bundle over S1, [287,Evans & Jaco,1977]. It is yes
if G is the fundamental group of an incompressible surface [ibid.] or if G is peripheral (i.e.,
a subgroup of the image of π1(∂M)) [1001,Simon,1976,Michigan Math. J.].

Update: Still open. But M(G) has a manifold compactification if M is hyperbolic and G
is finitely generated and not a free product [130,Bonahon,1986,Ann. of Math.], or ifM has
an essential lamination and G = Z [363,Gabai & Kazez,1993,J. London Math. Soc.]. It is
also true if ∂M has a component of genus ≥ 2 and M has no incompressible tori, where G
is finitely generated and not a free product; this is a corollary of Thurston’s hyperbolization
theorem (Bonahon). Also, the answer is yes ifM is a compact P 2-irreducible 3-manifold and
π1(M) has an asynchronously bounded, almost prefix closed combing and G is quasiconvex
with respect to this combing; this includes the case that π1(M) is automatic and G is a
regular subgroup [759,Mihalik,1995b].

Note that whether M(G) has a manifold compactification depends only on the pair of
groups (π1(M), G) [149,Brin & Thickstun,1989].

Problem 3.9 What closed, orientable 3-manifolds admit a round handle decomposition?

Remarks: A round k-handle is S1×Bk×B2−k attached along S1×(∂Bk)×B2−k, k = 0, 1, 2.
Morgan has shown that a 3-manifoldM with a round handle decomposition must be a Seifert
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fibered space or π1(M) must contain a subgroup isomorphic to Z ⊕ Z. Partial converse:
Seifert fibered spaces obviously have such decompositions. In dimensions > 3, round handle
decompositions exist iff the Euler characteristic is zero [49,Asimov,1975,Ann. of Math.].

Update: Morgan proves [785,1979,Topology] that an orientable, closed (or with torus
boundary components) 3-manifold, M3, has a round handle decomposition iff it is a graph
manifold, i.e. it decomposes along tori into a union of Seifert fibered 3-manifolds (they can
be glued together along the boundary tori in any way).

Problem 3.10 (Hilden & Montesinos) Every closed, orientable 3-manifold can be con-
structed as follows; let F1 and F2 be disjoint, compact surfaces (not necessarily orientable)
in S3. Take three copies of (S3;F1, F2), called S3

a, S
3
b , S

3
c , F1a, . . ., etc. Split S3

a along F1, S
3
b

along F1 and F2, and S3
c along F2. Then glue one side of F1 in S3

a to the other side in S3
b ,

and one side of F2 in S3
c to the other side in S3

b .

Question: Can the surfaces be chosen to be orientable?

Update: The answer is yes [481,Hilden, Lozano, & Montesinos,1983,Trans. Amer. Math.
Soc.].

Problem 3.11 Classify imbeddings of orientable surfaces Fg in S3.

Remarks: For S2, the Schoenflies theorem classifies. For T 2, any imbedding bounds an
S1 × B2 ([32,Alexander,1924,Proc. Nat. Acad. Sci. U.S.A.] and [321,Fox,1948,Ann. of
Math.]), so the classification reduces to knot theory.

Any imbedding of Fg into R3 is unknotted as soon as some projection to a coordinate
axis has only a single local maximum (or minimum) [806,Morton,1979]; (also [804,Morton,
1977,Notices Amer. Math. Soc.].

Any imbedding is ε-isotopic to a real algebraic variety in R3 [987,Seifert,1936,Math.
Zeit.]; this is true in general in codimension one.

Call a pair (S3, F ) prime if there is no pairwise connected sum (S3, F ) ∼= (S3, F1)#(S3, F2).
Are prime decompositions unique? Yes for genus 2 [1065,Tsukui,1970,Yokohama Math.
J.], [1066,Tsukui,1975,Yokohama Math. J.]; also [1022,Suzuki,1975b,Math. Japon.], [1021,
Suzuki,1975a,Hokkaido Math. J.].

Update: It is worth mentioning that a 3-manifold M imbeds in S3 iff M imbeds in S3 with
a handlebody complement ([321,Fox,1948,Ann. of Math.] and [751,Menasco & Thompson,
1989,Topology]).
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Prime decompositions are not unique in general [815,Motto,1992,Trans. Amer. Math.
Soc.].

Problem 3.12 Given M3, with a Riemannian metric, consider all smooth maps f : S2 →
M3 such that f 6' 0. There exists one of least area [962,Sacks & Uhlenbeck,1981,Ann. of
Math.] which is immersed (R. Gulliver).

Question: Is it imbedded?

(Added in proof: yes, or it double covers an imbedded RP2 (Meeks & Yau)).

Remarks: This would give a differential geometric proof of the sphere theorem.

Update: The map of least area is imbedded unless it double covers an imbedded RP2 [743,
Meeks, III & Yau,1980,Ann. of Math.].

Problem 3.13 Theorem: Every closed orientableM3 contains a fibered knotK, i.e., there
exists a fibration f : M −K → S1 and f is standard on a deleted tubular neighborhood of
K [821,Myers,1975,Notices Amer. Math. Soc.].

This is Winkelkemper’s open book decomposition but with connected binding. Note that
K is homologically trivial in M .

Question (Rolfsen): What elements of π1(M) are represented by fibered knots? Links?
Note that if an element is represented, so is any nonzero power.

Update: Observe that a fibered knot K in M3 bounds a surface so K represents an element
in the commutator subgroup [π1M,π1M ]. Harer proved [441,1982b,Math. Proc. Cambridge
Philos. Soc.] that exactly those elements which are in [π1M,π1M ] are represented by fibered
knots.

Problem 3.14 (Thurston) (A) Conjecture: Every irreducible, closed 3-manifold, with
infinite fundamental group which contains no subgroup isomorphic to Z ⊕ Z, has a
(see definitions in the Introduction). Assume, if necessary, that some finite cover is
sufficiently large.

(Added in proof, March 1, 1977: Thurston has a proof if, in addition, the 3-manifold
has an incompressible surface which is not a fiber of a fibration over S1.)

(B) Conjecture: Suppose G acts properly and discontinuously on a contractible 3-manifold
with compact quotient. Suppose also that G has no subgroup isomorphic to Z⊕Z. Then
G is conjugate to a discrete group of isometries of hyperbolic 3-space.
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Remarks: Clearly, (B) ⇒ (A). Furthermore, (B) holds iff ((A) and every such G is
residually finite) holds. The condition Z⊕ Z is not in G, is necessary.

(C) Conjecture (case when ∂M 6= ∅): Suppose (i) M3 is irreducible, (ii) π1(M) is infi-
nite and every Z⊕Z in π1M is peripheral, (iii) ∂M = ∂1M∪∂2M where each component
of ∂1M is a torus, and each component of ∂2M has negative Euler characteristic, (iv)
∂M is incompressible and every annulus A with ∂A ⊂ ∂M can be deformed, rel ∂, into
∂M . Then M−∂1M has a complete hyperbolic structure, with finite volume, such that
∂2M is totally geodesic.

Update: This is now a part of Thurston’s Geometrization Conjecture (see Problem 3.45).

(A) was proven in 1977 under the assumption that the manifold is Haken. Thurston’s
lectures in the late 1970’s outlined the proof, and, together with his Princeton notes [1050,
1977], gave proofs of some of the steps. Morgan gave a long detailed outline with proofs of
some steps [786,1984], and most of the remaining steps can now be found in the literature
(there is no doubt among the experts of the validity of the theorem).

The proof for the case when M3 fibers over S1 is exposed in Sullivan’s Bourbaki lecture
[1018,1981] and Thurston gave a detailed proof [1054,1986c]. Otal [862,1995] gives a new
approach to the proof using R-trees.

When M3 does not fiber over S1, the main step is the existence of a fixed point for the
skinning map, which was first proved via a compactness theorem (there are several absolute
and relative versions) by Thurston [1053,1986b,Ann. of Math.]; the compactness theorem
was also proved by Morgan & Shalen in a series of papers [790,1984,Ann. of Math.], [791,
1988a,Ann. of Math.], [792,1988b,Ann. of Math.].

To obtain a fixed point for the skinning map (defined in [Morgan, ibid.] or [739,McMullen,
1989,Invent. Math.]), Thurston studies its contraction with respect to the Teichmüller met-
ric. Uniform contraction is established using the compactness theorems (cited above) plus
control on the geometry of geometrically infinite ends (Chapters 8 and 9 of [1050,Thurston,
1977], [130,Bonahon,1986,Ann. of Math.], [172,Canary,1994], and [173,Canary, Epstein, &
Green,1987].

A different proof of the main step, avoiding the compactness theorems, was given by
McMullen [739,1989,Invent. Math.]. Otal & Paulin are preparing a book [863,Otal &
Paulin,1995] on the proof of the non-fibered case following McMullen’s approach.

Further papers are planned by Thurston and at least two preprints exist [1054,Thurston,
1986c] and [1055,Thurston,1986d].

(B) is known when the compact quotient is Haken (here, conjugate means topologically
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conjugate in that there is a homeomorphism from the contractible 3-manifold to H3 which
carries G to the discrete group of isometries).

(C) is true because M is Haken with the same references as for (A).

Problem 3.15 (Thurston) LetM3 be orientable and letG ⊂ π1(M3) be the homomorphic
image of π1(F ) where genus F = 2, e.g., any 2-generator subgroup of π1(M).

(A) Does G have 2-fold symmetry (involution) which comes from 180◦ rotation about the
axis below?

180◦

This is true for subgroups of PSL(2,C) (which is the group of isometries of hyperbolic
3-space, the universal cover of any 3-manifold with negative curvature).

(B) Suppose G ⊂ π1(M3) has generators a, b with a conjugate to b in π1(M3). Does G have
an additional 2-fold symmetry t where t(b) = a? True for 2-bridge knot complements
and 3-manifolds with Heegaard decompositions of genus 2.

Update: (Mess)

(A) (i) The picture indicates that what is required is a homomorphism from π1(F ) to G
such that the kernel is invariant under the hyperelliptic involution of F , and the
hyperelliptic involution induces an involution of G.

(ii) Some explanation is required for the claims in (A). For a 2 generator subgroup
and G a subgroup of PSL(2,C), the result is due to Jorgensen; 5.4.1 and 5.4.2
of [1050,Thurston,1977] is a suitable reference. The argument of 5.4.1 and 5.4.2
extends to the case that the homomorphism factors through a free product of two
free abelian groups, provided the image is not a solvable group.

More generally suppose G is a subgroup of PSL(2,C). If G is a quasifuchsian
group representing two Riemann surfaces of genus 2, then (by standard quasicon-
formal deformation theory) G admits a hyperelliptic involution, i.e. G is normal-
ized in PSL(2,C) by an involution which acts as the hyperelliptic involution on
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each of the boundary components at infinity. Although the Teichmüller theory
predicts the involution, there is a more elementary description generalizing that
of 5.4.1 and 5.4.2, and one deduces, given standard generators a1, b1, a2, b2 for the
quasifuchsian group, that the two fixed points of the involution can be expressed
algebraically in terms of the fixed points of a1, b1, a2, b2. (In other words the nor-
malizing involution is defined by a rational map from the representation variety
R(G,PSL(2,C)) to PSL(2,C). One can then deduce that there is a normalizing
involution except possibly when G is a solvable subgroup of PSL(2,C). For G a
solvable discrete subgroup of PSL(2,C) it is easy to verify that the normalizing
involution exists. This confirms the claims made in the statement of part (A)).

(iii) Suppose G is a two generator subgroup. If the covering of M corresponding to
〈a, b〉 admits a Solv geometric structure, then the required involution exists.

(iv) There are counterexamples to (A) whenever M is a spherical space form, with
generalized quaternion or binary polyhedral fundamental group, e.g. consider a
homomorphism from the free group on 2 generators onto the quaternion group of
order 8 which sends each generator to an element of order 4.

(v) Suppose G is a 2 generator group. Consider the covering M ′ of M corresponding
to the subgroup G. If G is freely decomposable then the desired involution of
G exists. If not, one should assume that M has no prime factor with finite
fundamental group, because of (iv). Reduce to the case that M is prime. Either
G is a finite index subgroup of M , or G is free, or G is the fundamental group of
a compact Haken manifold with one or two toral boundary components.

(vi) There are examples of 3-manifolds for which the rank of the fundamental group is
2 but the Heegaard genus is 3. See [127,Boileau & Zieschang,1984,Invent. Math.].
So it is not possible to construct the involution by using the fact that every 3-
manifold of Heegaard genus two is a double branched cover of the 3-sphere. In
these examples, if a and b are two generators for the fundamental groupG, there is
nonetheless an involution of the 3-manifold which takes a and b to their respective
inverses. (The involution is homotopic to the identity; it is a rotation half way
around every generic fiber.)

(vii) If the simple loop conjecture is true for maps into 3-manifolds, then either the
homomorphism from π1(F ) onto G factors through a free group of rank 2, or else
G contains a rank 2 abelian subgroup, or else the homomorphism from π1(F ) onto
G is an isomorphism and in that case the desired involution exists.

(viii) (Folklore.) If there is no essential simple loop on F which is mapped to a null
homotopic loop in M then the map from F to M can be realized as the inclusion
of an area minimizing minimal surface. If the surface was unique in its homotopy
class the hyperelliptic involution would act on it. But area minimizing minimal
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surfaces are not always unique, so this doesn’t lead to a proof.

(ix) Assuming the Geometrization Conjecture and assuming M aspherical one would
hope to answer the question by extending the results of Kobayashi mentioned
below.

(x) Perhaps the question was originally intended as an advertisement to topologists
of the importance of geometric ideas. From this point of view one would want
to forget about the original question and concentrate on the Geometrization and
Orbifold Geometrization conjectures, (see Problems 3.45, 3.46).

(B) The remark, True for 2-bridge knot complements and 3-manifolds with Heegaard decom-
positions of genus 2, should probably be interpreted as follows: if a, b are free generators
for the fundamental group of one of the handlebodies, and a, b are conjugate in π1(M)
then the additional involution t exists. For the 2-bridge knot complements see e.g.
[163,Burde & Zieschang,1985].

For 3-manifolds of Heegaard genus 2 and with the interpretation above, the claim is
true if M is hyperbolic (see 5.4.2 in [Thurston, ibid.]). If M is not prime then M is
the connected sum of two 3-manifolds of Heegaard genus 1 and the conjecture holds.
Suppose M is prime. The result can probably be obtained (if it is true ) using the
results of [590,Kobayashi,1984,Osaka J. Math.], if M has nontrivial characteristic de-
composition, although no one may have actually done so. SinceM has Heegaard genus
2, M is a branched cover of S3 over a 3-bridge knot or link, so according to a special
case of the Orbifold Geometrization Conjecture, either M has a nontrivial characteris-
tic decomposition, or M has a spherical or hyperbolic geometric structure with respect
to which the covering involution is isometric. Assuming the Geometrization Conjec-
ture one might expect to prove (A) for aspherical manifolds by extending Kobayashi’s
results.

Consider the standard (3, 5) torus knot K3,5 = {z5
1 = z3

2} in S3 ⊆ C2. Its double
branched cover is the Poincaré homology sphere P . S = {<z1 = 0} is a 2-sphere in S3,
and the preimage F of S is a genus two Heegaard surface in P . Let B be the orbifold
with underlying space the 3-ball {<z1 ≥ 0} in S3 and singular locus given by K3,5∩B.
Then πorb1 B = 〈e1, e2, e3‖e2

1, e
2
2, e

2
3〉 where each ei generates the local group of one of the

three arcs of Sing(B). Let H be the preimage of B in P . Then π1H = 〈e1e2, e2e3〉.
There is an order 3 symmetry τ of P which projects to a symmetry (z1, z2) 7→ (z1, ωz2)
of B, where ω is a cube root of 1. This order 3 symmetry permutes e1, e2, e3. Choosing
a base point on one of the 2 arcs in H fixed by τ , it follows that τ∗e1e2 = e2e3. So
e1e2 and e2e3 are conjugate in π1H and their images in π1P are conjugate. Now fix
a basepoint on the midpoint of the arc stabilized by e2. We have that i∗e1e2, i∗e2e3

generate π1P , where i : H → P is the inclusion. The covering transformation is an
involution j which inverts e1e2, e2e3 and also a = i∗e1e2, b = i∗e2e3. We may ask
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(i) Is there an involution t of P which preserves the handlebody H and satisfies t∗(b) =
a?

(ii) Is there an automorphism t of π1P which is an involution and commutes with j
and satisfies t∗(b) = a?

(iii) Is there an automorphism of π1P which is an involution and satisfies t∗(b) = a?

(B(ii)) appears to be the natural interpretation of additional but some might think
(B(iii)) is the more natural interpretation.

(B(i)) and (B(ii)) have negative answers but (B(iii)) has a positive answer. Suppose a
symmetry of P preserves the Heegaard surface F . Then the symmetry is conjugate to
one which commutes with the covering involution, so we will assume it does so. The
symmetry then induces a symmetry of K3,5. Up to conjugacy by a diffeomorphism
isotopic to the identity, a symmetry of a torus knots is a rotation along the fibers
or else an orientation preserving involution which takes fibers to fibers reversing the
fiberwise orientation and fixing a great circle in S3. So a symmetry of P which preserves
the Heegaard surface F either is the covering transformation j or else exchanges H
with the complementary handlebody.

Given any basepoint ∗ in P , the stabilizer of ∗ in the isometry group of P is a copy of
the alternating group A5 and this realizes the inner automorphisms of π1(P, ∗). Having
chosen our basepoint, if a symmetry of π1(P, ∗) commutes with j it is realized by an
isometry fixing ∗. It projects to a symmetry of K3,5. (This symmetry will not preserve
the standard metric on S3.) As discussed above this is impossible.

It turns out that a, b necessarily project to two elements in the quotient A5 of order
5. Considering the isometries of an icosahedron it is not hard to see that any two
conjugate isometries of order 5 are conjugate by an involution, and from this one can
show that the same holds for the preimages in π1P . So (B(iii)) has a positive answer.

Problem 3.16 (Thurston) Is there a reasonable real-valued function C on the set of 3-
manifolds which measures the complexity of π1(M3)? C should have the following properties:

(A) if M1 is a k-fold cover of M2, then C(M1) = kC(M2);

(B) C(M1#M2) = C(M1) + C(M2);

and perhaps

(C) if f : M1 →M2 has positive degree, then C(M1) ≥ C(M2);
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(D) C(M) = volume(M) if M is either S̃L(2,R) or hyperbolic 3-space modulo a discrete
group.

Note that (A) and (B) imply that C(M) = 0 if M fibers over S1 with monodromy of
finite order, or if M fibers over a torus, or if M is covered by S3.

Remarks: Via the axiom of choice, there appears to be an existence theorem for a function
C satisfying (a), (b) and (d). First consider the property of a 3-manifold M ,

(*) If M1 and M2 are homeomorphic finite covering spaces of M , then the degrees of the
coverings are equal.

Question: What 3-manifolds satisfy (*)? In particular, suppose M3 is not commensu-
rable with Fg × S1 or a T 2 bundle over S1; then does M3 satisfy (*)?

Next, call M1 and M2 commensurable if they have homeomorphic finite covers.

Define C as follows: C must obviously be zero on M if M does not satisfy (*); C depends
only on the prime components of M ; if M is prime and satisfies (*), then we define C on
the commensurability class of M by first defining C on M by (d) or else arbitrarily (axiom
of choice here), and then if M ′ is commensurable with M , let C(M ′) = (k/l)C(M) where
there exists N , a k-fold cover of M and an l-fold cover of M ′.

Also, see a forthcoming paper of Milnor & Thurston.

Update: See [770,Milnor & Thurston,1977,L’Enseign. Math.] for a discussion of the
possibilities, as well as [413,Gromov,1982,Inst. Hautes Études Sci. Publ. Math.] and [1052,
Thurston,1986a,Mem. Amer. Math. Soc.]. Also see Problem 3.84.

Problem 3.17 (Jaco) Suppose M3 is compact, orientable, and irreducible, and that K is
a positive integer. Does there exist at most a finite number (up to homeomorphism of M) of
isotopy classes of incompressible surfaces in M having Euler characteristic ≥ −K?

Remarks: Without the restriction on the Euler characteristic, the answer is no. Also, even
with the restriction it is necessary to allow equivalence up to homeomorphism of M [534,
Jaco,1970,Canad. J. Math]. Possibly an affirmative answer is contained in [428,Haken,1961,
Acta Math.].

Update: Yes, and a proof exists in Haken’s paper as the remark above suggests (see also
[536,Jaco & Oertel,1984,Topology]).
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Problem 3.18 (Jaco) Up to homotopy, does there exist at most a finite number of essential
maps of Fg into M3 where M3 is atoroidal?

Remarks: Recall that a map is essential if it induces an injection π1(Fg) → π1(M) (Fg =
closed, orientable surface), and M is atoroidal ifM contains no essential, properly imbedded,
nonperipheral annuli or tori. The answer is no without the atoroidal assumption [534,Jaco,
1970,Canad. J. Math], but even then it seems one should be able to describe the mappings.

Update: The answer is yes if M is geometric, or if π1(M) is hyperbolic in the sense of
Gromov [417,1993].

Problem 3.19 Which immersed 2-spheres in R3 bound immersed 3-balls?

Remarks: This is solved for one less dimension by S. Blank (see [880,Poénaru,1969] and
[326,Francis,1970,Michigan Math. J.]).

Update: No progress.

Problem 3.20 Under what conditions does a closed, orientable 3-manifold M smoothly
imbed in S4?

Remarks: The torsion of H1(M ;Z) must be of the form T ⊕ T [438,Hantzch,1938,Math.
Zeit.]. If H1(M ;Z) ∼= Z, then the quadratic form of M is null-concordant; in particular the
signature is zero and the Alexander polynomial A(t) is of the form f(t)f(t−1) [766,Milnor,
1968a], [565,Kawauchi,1976,Osaka J. Math.]. If M is a Z/2Z-homology sphere, then the
µ-invariant must be zero (see [496,Hirzebruch, Neumann, & Koh,1971]).

Update: If M is a homology 3-sphere, then it imbeds topologically in S4 [329,Freedman,
1982,J. Differential Geom.], but in the smooth case obstructions arise from gauge theory
because M would bound a smooth acyclic 4-manifold.

For non-homology spheres, topological obstructions arise from signature invariants [383,
Gilmer & Livingston,1983,Topology], and in the smooth case further obstructions arise from
gauge theoretic methods [311,Fintushel & Stern,1987,Topology].

Problem 3.21 Let X be an acyclic 2-complex and M3
0 an abstract regular neighborhood of

X; ∂M0 = S2, so cap off to get a homology 3-sphere M3. Find an effective way to compute
the Rohlin invariant of M3 in terms of X and its regular neighborhood.
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Update: No progress.

Problem 3.22 (Birman & Montesinos) Do lens spaces admit minimal Heegaard split-
tings of genus > 1? Conjecture: Yes.

Update: The answer is no. Bonahon & Otal [131,Bonahon & Otal,1983,Ann. Sci. École
Norm. Sup. (4)] proved that every Heegaard splitting of a lens space is a stablization of the
genus 1 splitting. Every Heegaard splitting is a stabilization of the standard one for T 3 [120,
Boileau & Otal,1990,J. Differential Geom.] and for orientable F 2× S1 [974,Schultens,1993,
Proc. London Math. Soc.]. Genus 2 Heegaard splittings of Seifert fibered 3-manifolds with
base S2 and 3 exceptional fibers were classified in [121,Boileau & Otal,1991,Invent. Math.].

Problem 3.23 (Jaco) A sufficiently large 3-manifold is atoroidal if it contains no essential,
nonperipheral annuli or tori.

What groups appear as π1 of an atoroidal manifold?

Remarks: Such manifolds are determined by their fundamental groups (Johannson).

Update: Assuming the 3-manifold M is orientable and irreducible, then M is hyperbolic
(Thurston) (see Update to Problem 3.14) and π1(M) is a finitely generated discrete subgroup
of PSL(2,C), orM is one of a special class of Seifert fibered spaces over S2 with 3 exceptional
fibers for which π1(M) is a central Z-extension of a triangle group. Without irreducibility
one gets free products of such groups.

Problem 3.24 (Hilden & Montesinos) Is every homology 3-sphere the double branched
covering of a knot in S3?

Remarks: It is known that S1 × S1 × S1 is not a double branched covering (Fox) and that
S1 × Fg (Fg = surface of genus g) is not a double branched covering (Montesinos), but the
arguments depend on a nontrivial first homology group.

Update: No; the first example, a suitable union of two knot spaces, appears in [823,
Myers,1981b,Pacific J. Math.]. Most hyperbolic 3-manifolds, including many homology 3-
spheres, have no symmetry. For more specific information, see [318,Flapan,1985,Pacific
J. Math.], [996,Siebenmann,1980] and [118,Boileau, Gonzalez-Acuña, & Montesinos,1987,
Math. Ann.].
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Problem 3.25 (Birman) Let K be a knot in S3 and M(K) its 2-fold branched covering
space. To what extent do topological properties of M determine K? More generally, describe
the equivalence class [K] of K under the relation K1 ≈ K2 if M(K1) is homeomorphic to
M(K2).

Remarks:

1. If K is a 2-bridge knot, then M(K) determines K among 2-bridge knots.

2. IfM(K) is composite, thenK is composite [574,Kim & Tollefson,1980,Michigan Math.
J.].

3. The bridge index of K ≤ Heegaard genus of M [93,Birman & Hilden,1975,Trans.
Amer. Math. Soc.].

4. There are examples of distinct prime 3-bridge knots which have homeomorphic 2-fold
covering spaces [92,Birman, Gonzalez-Acuña, & Montesinos,1976,Michigan Math. J.].
In particular, the Brieskorn manifold Σ(2, 3, 11) is the 2-fold branched cover of the
(3, 11)-torus knot and the knot in Figure 3.25.1 (Akbulut).

Figure 3.25.1.

Update: Montesinos & Whitten [781,1986,Pacific J. Math.] prove that if K and K ′ are
knots in S3, K is prime, D(K) and D(K ′) are twisted doubles of K and K ′ (with the
same clasps), and M(D(K)) and M(D(K ′)) are the double branched covers of S3 along
the doubled knots, then, K and K ′ are ambient isotopic iff M(D(K)) and M(D(K ′)) are
diffeomorphic.
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If K is a 2-bridge knot, then M(K) is a lens space; it is a 2-fold branched cover of a
unique knot which must be K [499,Hodgson & Rubinstein,1985].

It would follow from the Orbifold Geometrization Conjecture (see Problem 3.46) that
there are only finitely many knots in the equivalence class [K].

Problem 3.26 (Birman & Montesinos) Every lens space is a 2-fold cover of S3 branched
over a unique 2-bridge knot or link. Can it be a 2-fold cover of S3 branched over any other
knot or link? Conjecture: No.

Update: No, the only link is the 2-bridge one [499,Hodgson & Rubinstein,1985].

For the following five problems of A. Durfee, P. Orlik and R. Randell, let Lk be the
closed, orientable 3-manifolds which occur as links of isolated singularities of complex, ana-
lytic surfaces of complex codimension k in C2+k; in codimension > 1 the singularity should
be normal. (Note that any analytic singularity is equivalent after an analytic change of
coordinates to an algebraic singularity.) To fix notation when k = 1, let f : C3 → C be a
polynomial with an isolated singularity at the origin, and let K = f−1(0) ∩ εS5 for small ε.
Then the map f/|f | : S5 −K → S1 is a bundle map with fiber called F 4.

Problem 3.27 Which closed, orientable 3-manifolds belong to L1? to Lk, k > 1?

Remarks: It is a classical result that a 3-manifold belongs to Lk iff it is the boundary of
a plumbing on a finite, connected graph, not necessarily simple, with orientable surfaces
at the vertices and negative definite intersection form [493,Hirzebruch,1966]. These are
a special case of Waldhausen’s Graphenmannigfaltigkeiten (see [1084,1967a,Invent. Math.],
[1085,1967b,Invent. Math.]).

S1 × S1 × S1 is not a link in any codimension [1016,Sullivan,1975,Topology]. Other
3-manifolds, such as the lens space L(3, 1), occur as links only in codimension greater than
one [262,Durfee,1975].

Question: What can be said about groups which occur as fundamental groups in L1?

Update: Still open.

Problem 3.28 Is every 3-manifold K in L1 irreducible?
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Remarks: Mumford [816,1961,Inst. Hautes Études Sci. Publ. Math.] (also [493,Hirze-
bruch,1966]) proved that if π1(K) = 0, then K = S3. If V admits an S1 action, then
K is a Seifert fibered space and Waldhausen [1084,1967a,Invent. Math.], [1085,1967b,In-
vent. Math.] proved that K is irreducible. The simplest class to attack next is provided
by Wagreich [1082,1972,Topology] where π1(K) is solvable and K has a circular plumbing
graph.

Update: Every 3-manifold in Lk for all k ≥ 1 is irreducible: furthermore it is determined
by its fundamental group, except for lens spaces [834,Neumann,1981,Trans. Amer. Math.
Soc.].

Problem 3.29 To what extent does the Seifert matrix on F 4 determine the topology of the
singularity? That is, does it determine K up to diffeomorphism? F up to diffeomorphism?
Up to isotopy?

Remarks: For f : Cn → C, n > 3, the Seifert matrix determines the topology of the
singularity completely [261,Durfee,1974,Topology].

Update: The conjecture fails for n = 2; P. DuBois & F. Michel [254,1994,J. Algebraic
Geom.] give two topologically distinct plane curve germs g1 and g2 which have isomorphic
Seifert forms. Define

fr,s(x, y) = ((y2 − x3)2 − xs+6 − 4yx(s+9)/2)((x2 − y5)2 − yr+10 − 4xy(r+15)/2)

and let s ≥ 11 and s 6= r + 8; then g1 and g2 can be any pair fr,s and fs−8,r+8.

Then the conjecture for n = 3 fails [44,Artal-Bartolo,1991,C.R. Acad. Sci. Paris Sér.
I Math.] using fr,s(x, y)− z2 and fs−8,r+8(x, y) − z2, for then the corresponding K are not
homeomorphic.

Problem 3.30 A polynomial G(t, z0, . . . , zn) is called a µ-homotopy between G0 and G1 if
Gt(z0, . . . , zn) = G(t, z0, . . . , zn) has an isolated singularity with constant Milnor number µ
for all t in a connected open set in C containing 0 and 1. Lê and Ramanujan ([642,1976,
Amer. J. Math.], and also [641,Lê Dũng Tráng,1973]) show that for n 6= 2, the topology
of G0 and G1 is identical, i.e., (εS4, KG0) is pairwise diffeomorphic to (εS4, KG1) and the
bundles over S1 are isomorphic.

Prove this for n = 2 (what is missing is the 4-dimensional h-cobordism theorem).

Update: Still open.
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Problem 3.31 Prove that σ(F 4) ≤ 0 with equality only for a nonsingular point. (See [263,
Durfee,1978,Math. Ann.].)

Update: The inequality has been proved when f is a weighted homogeneous polynomial
[1124,Xu & Yau,1993,J. Differential Geom.]. f is such a polynomial with weights (positive,
rational numbers) (w0, w1, w2) if f can be expressed as a linear combination of monomials
zi00 z

i1
1 z

i2
2 for which i0/w0 + i1/w1 + i2/w2 = 1. Then Xu & Yau prove the inequality

σ(F ) ≤ −
µ

3
−

2

3
(ν − 1),

where µ = b2(F ) and ν is the multiplicity of the singularity, which is inf{n ∈ Z+ : n ≥
inf(w0, w1, w2)}.

The higher dimensional version of Durfee’s conjecture is that (−1)nσ(F 2n) ≥ 0 where 2n
is the complex dimension of F (in our case n = 1).

Problem 3.32 What is the Whitehead group Wh(G) of a 3-manifold group G = π1(M3)
for M compact and irreducible?

Remarks:

(1) Suppose G is infinite. Then Wh(G) = 0 if M3 is sufficiently large, but is unknown
otherwise, e.g., if M3 has a finite cover which is sufficiently large. In fact, infinite
3-manifold groups belong to the class of finitely presented, torsion free groups, and
there is no such group known with nonzero Whitehead group or reduced projective
class group K̃0(Z(G)).

(2) If G is finite, then Wh(G), when known, is cyclic. (Incorrect, see below.)

Update:

(0) The Whitehead group of a free product is the direct sum of the Whitehead groups of
the factors.

(1) For infinite G, Wh(G) = 0 modulo the Geometrization Conjecture. For, Wh(G) = 0
if M is hyperbolic [292,Farrell & Jones,1986,Ann. of Math.], or if M is an aspherical
Seifert fibered space ([1091,Waldhausen,1978a,Ann. of Math.] for the Haken cases,
[291,Farrell & Hsiang,1981b,J. London Math. Soc.] for cases with Euclidean base,
and [877,Plotnick,1980,Comment. Math. Helv.] for the remaining cases). Also, the
projective class group K̃0 vanishes, the second Whitehead group vanishes, and the
higher Whitehead groups are torsion groups [293,Farrell & Jones,1987].



120 CHAPTER 3. 3-MANIFOLDS

(2) If G is any finite periodic group (including finite 3-manifold groups), then

Wh(G) ∼= Zr−q × (Z/2Z)k

where:

r = number of real representations of G = number of conjugacy classes of unordered
pairs (g, g−1);

q = number of rational representations of G = number of conjugacy classes of cyclic
subgroups; and

k = number of conjugacy classes of cyclic subgroups C < G such that

(1) |C| is odd,

(2) the centralizer of C has non-abelian Sylow 2-subgroup, and

(3) there is no g in normalizer(C) which acts by x→ x−1 (which implies that |C| > 1).

In particular, Wh(G) is torsion free for all the known finite fundamental groups of
3-manifolds (see the list of subgroups of SO(4) in Problem 3.37) except for Z/nZ×Tv
of order n · 8 · 3v where (n, 6) = 1, in which case the torsion of Wh(G) is (Z/2Z)k for
k+ 1 equal to the number of divisors of n · 3v−1; and except for Z/nZ×H, where H is
a finite subgroup of SU(2) of order coprime to n with non-abelian Sylow 2-subgroup.
For these calculations, see [855,Oliver,1988].

Problem 3.33 (A) (Thurston) Does every finitely generated 3-manifold group G have a
faithful representation in GL(4,R)?

Remarks: If so, G is residually finite (part (B)). Since PSL(2,C) ↪→ GL(4,R), this
is true for hyperbolic 3-manifolds (see the Introduction).

(B) Is G residually finite?

Remarks: See [472,Hempel,1976] for an extensive discussion. (Residually finite means
that for each g 6= 1, there exists a representation λ of G to a finite group for which
λ(g) 6= 1.) (Added in proof, March 1, 1977: Thurston has probably shown that
G = π1(M3) is residually finite if M or a finite cover is sufficiently large.)

(C) Is G Hopfian?

Remarks: Residually finite implies Hopfian (for finitely generated groups). Hopfian
means that every epimorphism G→ G is monic.
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(D) Is the Frattini subgroup of G trivial?

Remarks: Yes, if G is a knot group; if the Frattini subgroup is nonzero for an ori-
entable, compact, irreducible, sufficiently large 3-manifold, then the 3-manifold must
be a Seifert fibered space (in which case the Frattini subgroup is cyclic) [33,Allenby,
Boler, Evans, Moser, & Tang,1979,Trans. Amer. Math. Soc.]. The Frattini subgroup
F is the intersection of the maximal subgroups; equivalently, g ∈ F if every set of
generators of G containing g does not need g.

Update:

(A) Still open.

(B) G is residually finite if the 3-manifold is virtually geometric (implied by virtually Haken)
[1051,Thurston,1982,Bull. Amer. Math. Soc.] and [475,Hempel,1987b].

(C) Residually finite implies Hopfian, so see (B).

(D) Yes when G is residually finite, so see (B).

Problem 3.34 (Smale) Conjecture: Diff+(S3) is homotopy equivalent to SO(4).

Remarks: π0(Diff+(S3)/SO(4)) = 0 [191,Cerf,1968]. (Added in proof, March 1, 1977: A.
Hatcher has announced a proof of the conjecture.)

Update: True, as proved by Hatcher [464,1983,Ann. of Math.].

Problem 3.35 (Hatcher) Compute π0(Diff(L3)), the space of diffeomorphisms of a lens
space.

Remarks: π0(Diff(RP3)) = Z/2Z.

Update: Solved by Bonahon [129,1983b,Topology] and by Hodgson and Rubinstein [499,
1985]. π0(Diff(L(p, q))) is isomorphic to

a) Z/2Z if p = 2 or if p 6= 2 and q ≡ ±1 mod p,

and when p 6= 2 and q 6≡ ±1 mod p, one has 3 cases.

b) Z/2Z ⊕ Z/2Z if q2 ≡ 1 mod p.

c) Z/4Z if q2 ≡ −1 mod p.
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d) Z/2Z if q2 6≡ ±1 mod p.

Moreover, homotopy implies isotopy for lens spaces, and, in fact, for geometric 3-manifolds
other than hyperbolic ones (see the Remarks to Problem 3.68).

Problem 3.36 (W.-C. Hsiang) Conjecture: rank(π1Diff(L(p, q))⊗Q) ≥ 1
2
(p− 1).

Remarks: For lens spaces of dim ≥ 5, the corresponding statement is true [512,Hsiang &
Jahren,1983,Pacific J. Math.]. These elements are detected by Atiyah–Singer invariants.

Note that rank(π1Iso(L(p, q)) ⊗ Q) ≤ 2 (W. C. Hsiang & B. Jahren). If the conjecture
is true, it means that the diffeomorphism group of lens spaces is generally very different
from the group of isometries (for any Riemannian metric) and the H-space of homotopy
equivalences. Compare the case of 3-manifolds whose universal cover is hyperbolic 3-space
(Problem 3.14).

Update: The conjecture is false by the following work of Ivanov. An oriented 3-manifold
with finite fundamental group which contains a Klein bottle has a fundamental group of
the form 〈a, b | abab−1 = 1, a2mb2n = 1〉, (m,n) = 1; this group determines the 3-manifold
which can be denoted Q(m,n). If Diff0(M) denotes the identity component of Diff(M), then
Ivanov shows that

• for m,n 6= 1, Diff0(Q(m,n)) ∼= S1,

• for n 6= 1, Diff0(Q(1, n)) ∼= S1 × S1,

in [522,Ivanov,1979a,Doklady Akad. Nauk SSSR], [523,Ivanov,1979b,Doklady Akad.

Nauk SSSR], [528,Ivanov,1984,J. Soviet Math.] and in his Ph.D. thesis (Leningrad, 1980).
Since Q(1, n) is the lens space L(4n, 2n−1), this disproves the conjecture. Also see Problem
3.47.

Problem 3.37 (C. B. Thomas) Classify free actions of finite groups on S3.

(A) Existence: If a finite group Γ acts freely on S3, then Γ is, up to direct product with
a cyclic group of coprime order, one of the following types:

(1) Z/rZ,

(2) an extension of a cyclic group by one of order 2k,

(3) a generalized binary tetrahedral group T ∗v of order 8 · 3v,
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(4) the binary octahedral group O∗ of order 48, or the binary icosahedral group of
order 120,

(5) a certain split extension of Z/(2n + 1)Z by the binary dihedral group of order 8
(see [764,Milnor,1957a,Amer. J. Math.], and [644,Lee,1973,Topology]).

All these groups except for type (A–5) admit faithful representations in SO(4), i.e.,
have free, linear actions on S3 [1118,Wolf,1967]. No nonlinear actions are known.

Question: What about groups of type (A–5)?

Remarks: If SO(4) ' Diff+S3 (see Problem 3.34), then these groups do not act freely
on S3 (C. B. Thomas).

(B) Uniqueness: The absence of nonlinear examples suggests:

(1) If Γ acts freely on S3, is S3/Γ homotopy equivalent to the quotient of a linear
action?

Remarks: Yes for Z/rZ, the binary dihedral groups D∗8k (in (5) above), and T ∗v ,
v ≥ 2. Yes for the remaining groups if a sequence of obstructions inπi(Diff+S3/SO(4))
vanish; so again there is a reduction to the Smale conjecture (Problem 3.34) [645,
Lee & Thomas,1973,Bull. Amer. Math. Soc.], and [1046,Thomas,1977,Math.
Ann.].

We can ask if S3/Γ is simple homotopy equivalent or even homeomorphic to the
quotient of a linear action, but this looks hard for arbitrary Γ. It may be easier
for the following special cases:

(2) Compute the Reidemeister torsion of an arbitrary free Z/rZ-action; in particular,
is every cyclic quotient simple homotopy equivalent to a lens space L(r, q)?

Remarks: Yes, trivially, for r = 2, 3, 4, 6. At the Poincaré complex level, one can
realize geometrically Reidemeister torsions distinct from those of the L(r, q).

(3) Let Z/2kZ act freely on S3. Is the quotient homeomorphic to a lens space?

Remarks: Yes for k = 1, 2, 3 [668,Livesay,1960,Ann. of Math.], [926,Rice,1968,
Duke Math. J.], [928,Ritter,1975,Trans. Amer. Math. Soc.].

(4) If D∗8 acts freely on S3, is the quotient homeomorphic to the unique linear quo-
tient?

Remarks: By (B–1) and the vanishing of Wh(D∗8) [569,Keating,1973,Mathe-
matika], the quotient is simple homotopy equivalent to the linear quotient, and
its double cover is homeomorphic to L(4,±1) [Rice, ibid.].
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Update: (A) The groups in (A–5) do not act freely on S3 [950,Rubinstein,1994]. Regarding
the remark above, Hatcher proved that SO(4) ' Diff+S3, but Thomas’ claim has not been
proved.

The groups in (A–5) can be better described as follows: the binary dihedral group of
order 8 is usually called the quaternionic group, Q8, (which consists of ±1,±i,±j,±k). Let
2n+1 = a · b · c be a factorization of 2n+1 into coprime integers, and let G = Q(8, a, b, c) =
Z/aZ × Z/bZ × Z/cZ×̃Q8 where Q8 acts by letting i, k act by inversion on the first factor
while j acts trivially, j, k act by inversion on the second factor while i acts trivially, and i, j
act by inversion on the third factor while k acts trivially. The G constructed from ordered,
odd, coprime triples {a, b, c} form the groups in (A–5). Each acts linearly on S7.

It is possible to find a complex X, homotopy equivalent to S3, on which G acts. Then
there is an obstruction [1024,Swan,1960,Ann. of Math.] to X being a finite complex, which
may be non-zero (e.g. Q(8, 3, 7, 1)) or zero (e.g. Q(8, 3, 13, 1)) [762,Milgram,1985].

When Swan’s obstruction is zero, one can attempt to use the surgery program to find a 3-
manifold which is a homology 3-sphere (in dimension 3 surgery can’t control the fundamental
group, only homology) on which G acts. There is a second obstruction in Lp3(G) which
measures the obstruction to the existence of a free action on an open 4-manifold of the form
R ×M3 with M3 a homology 3-sphere. When the second obstruction vanishes, there is a
third obstruction in Lh3(G) which measures the obstruction to a free action on an actual
homology 3-sphere.

The first case where the second obstruction vanishes but the third does not is the group
Q(8, 7, 29, 1), and the first example where the third obstruction (in Lh3(G)) vanishes is
Q(8, 41, 223, 1) [Milgram, ibid ]. Thus Q(8, 41, 223, 1) acts on a homology 3-sphere M , but it
is unknown what restrictions exist on π1(M). (For further number theory, see [77,Bentzen,
1987,Proc. London Math. Soc.].) Thus, Rubinstein has shown that none of these groups
can act on S3, but Milgram has shown further that many of them cannot act on a homology
3-sphere, or even a finite 3-complex.

(B) Rubinstein [ibid.] has shown that the following groups act only via their faithful
representations in SO(4): any cyclic group of order p2k3n for p prime; the groups listed in
(A–2) and (A–3), andO∗, as well as their products with a cyclic group of coprime order. Thus
the only remaining possibilities for groups which act non-linearly on S3 are the remaining
cyclic groups and direct products of a cyclic group of order prime to 2, 3, 5 with the binary
icosahedral group I∗.

The actions of the remaining cyclic groups could all be classified if one could prove the
Smale conjecture for lens spaces, that is, the group of diffeomorphisms of L(p, q) is homotopy
equivalent to the group of isometries (see Problem 3.47. It is true for L(2p, q), q 6= 1, [732,
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McCullough & Rubinstein,1989].

Earlier work on uniqueness includes: [949,Rubinstein,1979b,Trans. Amer. Math. Soc.],
[948,Rubinstein,1979a,Math. Ann.], [822,Myers,1981a,Topology].

Problem 3.38 (C. Giffen) The Smith Conjecture (K, r): If K is a smooth, nontrivial
knot in S3, then K is not the fixed point set of a homeomorphism h : S3 → S3 of least period
r (r > 1).

Remarks: The conjecture first appeared in [1007,Smith,1939,Ann. of Math.]. Note that
K must be smooth, for there are wild knots which are fixed point sets [783,Montgomery &
Zippin,1954,Proc. Amer. Math. Soc.] and [88,Bing,1964,Ann. of Math.]; however, they
bound wild disks. The conjecture is known for (K, r) if r is even [1090,Waldhausen,1969,
Topology], or if K is a torus knot [376,Giffen,1964], and [325,Fox,1967,Michigan Math. J.],
or if K is a 2-bridge knot (and others) (Cappell & Shaneson), or ifK is a cable knot, a cable
braid, or a double of a knot (R. Myers), or other special cases of (K, r).

(A) Covering Conjecture (K, r): If K is a smooth, nontrivial knot in a homotopy sphere
Σ3, then the r-fold cyclic branched covering Σr(K) over K is not simply connected if
r > 1.

Remarks: This is equivalent to the conjecture that π1(Σ3−K)/〈µr〉 6∼= Z/rZ for µ =
meridian of K. Also the Covering Conjecture (K, r) for all K, r implies the Smith
Conjecture (K, r) for all K, r and the converse holds if the Poincaré Conjecture is true.
The Covering Conjecture is known for doubles of any nontrivial knot in Σ3 [377,Giffen,
1967,Illinois J. Math.], see also [401,Gordon,1977,Quart. J. Math. Oxford Ser. (2)]
and cases covered in [576,Kinoshita,1958,Osaka Math. J.] and [322,Fox,1958,Osaka
Math. J.].

(B) Let F (S3, K) = {h : S3 → S3 | h = idonK} with compact open topology. The
path component F (S3, K)0 of the identity contains no elements of finite order if K
is nontrivial [377,Giffen,1967,Illinois J. Math.]. Thus a counterexample to the Smith
Conjecture implies π0(F (S3, K)) (∼= F (S3, K)/F (S3, K)0) has an element of order
r > 1. Let Γ(S3, K) ≡ Aut(π1(S3 − K), µ, l)/Iµ be the group of automorphisms of
π1(S3−K) which fix a meridian-longitude pairµ, λ, divided by the normal subgroup, Iµ,
generated by the inner automorphism conjugation-by-µ. Then Γ(S3, K) ∼= π0F (S3, K)
(Giffen).

Algebraic Conjecture (K, r): Γ(S3, K) contains no element of least order r, r > 1.

Remarks: Clearly this conjecture implies the Smith Conjecture (K, r), and the reverse
is true for fibered knots; also there is some information about π0(F (S3, K)) (Giffen).
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Update: The Smith Conjecture (for homotopy 3-spheres) was proved (and (A) was proved)
in a joint effort by Thurston, and Meeks and Yau, with help from Bass, Shalen, Gordon
and Litherland [69,Bass & Morgan,1984a]. Furthermore, (B) follows from (A) using [1141,
Zimmermann,1982,Math. Zeit.].

Problem 3.39 Let PL(M3) be the group of PL homeomorphisms of a compact 3-manifold.

(A) (Tollefson) Does PL(M) have only finitely many conjugacy classes of finite cyclic
subgroups of given order? (If yes, for S3, then the Smith Conjecture holds.) What
about finite subgroups?

(B) (Giffen) Suppose M admits no S1 action. Is it possible for PL(M) to contain an
infinite torsion subgroup?

(C) (Thurston) Is there a bound to the order of finite subgroups of PL(M)? Note that this
is true for surfaces Fg since a finite subgroup represents faithfully inGL(2g−2,Z/3Z) =
Aut(H1(Fg;Z/3Z)).

Update:

(A) Still open, even for S3 where the solution to the Smith conjecture does not cover free
actions.

(B) (Mess) Still open. Even in the simple case M = S2×S1#S2×S1, if PL(M) contained
a finitely generated infinite torsion group, then it would have a finite index subgroup
acting homotopically trivially, but apparently there is no way to exclude this possibility.

If M is aspherical and not a counterexample to the Geometrization Conjecture (see
Problem 3.45), then M does not admit an action of a finitely generated, infinite torsion
group unless M admits an S1 action in which case it is not known whether M admits
an effective action of a finitely generated torsion group. The proof of this statement
requires standard methods and the Seifert fibered space conjecture (see Problem 3.5).

It can be asked instead whether PL(M) can contain an infinite, locally finite, group of
homeomorphisms (a group is locally finite if every finitely generated subgroup is finite).
It can be shown, using the equivariant sphere theorem [744,Meeks, III & Yau,1982,
Topology], that the problem reduces to the case of prime M . In that case, if M has
finite fundamental group, then no more can be said as in (A). IfM is closed, aspherical,
but not atoroidal, then using the equivariant torus theorem together with rigidity
theorems of Mostow [814,1973] and Prasad [889,1973,Invent. Math.], or the related
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topological theorems of Johannson on the mapping class groups of Haken manifolds
[542,Johannson,1979], one can show that there is no action of an infinite locally finite
group unless there is an S1-action. One obtains the same conclusion ifM is hyperbolic.

(C) It should be assumed here, as in (B), that M admits no S1 action. If there is a
counterexample, there is a prime counterexample, so we may assume that M is prime.
Then there is a bound unless either M has finite fundamental group or is aspherical,
atoroidal and a counterexample to the Geometrization Conjecture . (If M is oriented
and has finite fundamental group and admits no S1 action, thenM is a counterexample
to the Geometrization Conjecture (Problem 3.45).)

Problem 3.40 (Nielsen) Let h be a homeomorphism of a 3-manifold M such that the nth

iterate hn is homotopic to the identity. When does there exist a map g homotopic to h such
that gn = identity?

Remarks: For n = 2 and M a closed, orientable 3-manifold fibered over S1 with fiber F ,
there exist examples of such h which are not homotopic to any involution (for F = torus,
[919,Raymond & Scott,1977,Archiv. Math. (Basel)] and for genus F > 1, J. L. Tollefson).

For n a prime and M an orientable, closed 3-manifold fibered over S1 with genus F > 1,
there always exists a periodic g (homotopic to h) whenever either H1(M ;Q) = Q or n > 2
and M is a Seifert fibered space [1058,Tollefson,1976,Trans. Amer. Math. Soc.]. (Added in
proof, April 1, 1977): Consider the natural map

Diff(M3)
π0−→ π0(Diff(M3)).

Thurston has shown that there exists an inverse ρ such that π0ρ = id if M3 is closed,
irreducible, sufficiently large and π1(M3) is infinite and contains no Z ⊕ Z, i.e., if M3 is
hyperbolic (see Problem 3.14); furthermore, π0(DiffM3) is finite under the same assumptions.

Update: To begin with, M should be assumed to be irreducible. Otherwise there are
straightforward counterexamples such as: let h : S1×S2 → S1×S2 rotate the 2-sphere once
while traversing the circle; h2 is homotopic (indeed isotopic) to the identity, but h is not
isotopic to an involution (Mess).

The comment which was added in proof above, should simply state that the answer to
the Problem is yes for hyperbolic manifolds (they do not need to be Haken).

However it was not known in 1977 that the kernel of the map π0(DiffM3)→ Out(π1M)
was trivial for all hyperbolic manifolds, or even that π0(DiffM3) was finite; it is still not
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known although Gabai [360,1994b,Bull. Amer. Math. Soc.] has proved this for almost all
hyperbolic 3-manifolds and it is expected that computations by N. Thurston will show that
in fact there are no exceptions.

If M is elliptic, i.e. a quotient of S3 by a finite linear action, then the answer is yes as
a corollary of work of [499,Hodgson & Rubinstein,1985] and [129,Bonahon,1983b,Topology]
for lens spaces, and [121,Boileau & Otal,1991,Invent. Math.].

If M is Haken, then there is an obstruction inH3(Z/nZ;G) which vanishes iff h is realized
by a periodic diffeomorphism g (here, G are twisted coefficients in the center of π1(M)). The
obstruction was introduced in [222,Conner & Raymond,1972].See [1140,Zieschang,1981] for
a survey of work on this problem. See also [1141,Zimmermann,1982,Math. Zeit.]; Zimmer-
mann’s work allows for the case of a finite, not necessarily cyclic, group.

The obstruction vanishes if M is prime and aspherical, but not a Seifert fibered space
by an application of the Seifert fibered space conjecture (see Problem 3.5), because the
obstruction is trivial when the center of the fundamental group is trivial.

Problem 3.41 (Montesinos) Is there a 3-manifold with an infinite number of nonequiva-
lent involutions with S3 as orbit space?

Remarks: Given N , there exists a manifold with more than N such involutions (Mon-
tesinos).

Update: A negative answer would follow from the Orbifold Geometrization Conjecture (see
Problem 3.46).

Problem 3.42 (J. L. Tollefson) Is every periodic homeomorphism of a 3-manifold homo-
topic to a periodic PL homeomorphism of the same period?

Remarks: Yes for homeomorphisms which are locally nice so that the quotient is locally
triangulable, for then we can triangulate the 3-manifold so that the original homeomorphism
is PL. Tameness of the fixed point set often implies this niceness [776,Moise,1979,Trans.
Amer. Math. Soc.], [777,Moise,1980,Trans. Amer. Math. Soc.].

Update: (Mess) The answer is yes for a compact manifold with (possibly empty) boundary
if the 3-manifold is not a counterexample to the Geometrization Conjecture. If the manifold
is hyperbolic, use Mostow rigidity. If the manifold is Haken the result of [1141,Zimmermann,
1982,Math. Zeit.] applies. If the manifold is aspherical but neither hyperbolic nor Haken, it
must be a Seifert fibered space with only 3 exceptional fibers. It is an exercise in homotopy
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theory to show that the periodic homeomorphism must be homotopic to a periodic homeo-
morphism which preserves the geometric structure. If the manifold has finite fundamental
group and is not a counterexample to geometrization, it is an exercise in homotopy the-
ory to show that the periodic homeomorphism is homotopic to an isometry of the spherical
structure.

If the manifold is not prime, an exercise in homotopy theory shows that the periodic
homeomorphism is homotopic to one which permutes a certain collection of spheres, and so
the problem reduces to the previous cases.

There is, however, a more satisfying point of view towards the question. Claim: an
action of a finite group G of homeomorphisms on a 3-manifold (possibly noncompact) can
be approximated by a PL action of the same group.

Sketch of proof of claim: First assume that the action preserves orientation. Triangulate
the complement of the singular locus in the quotient space. Use this triangulation to con-
struct a G invariant handlebody (perhaps of infinite genus in the noncompact case) around
the upstairs singular set. Then use the equivariant loop theorem to cut the handlebody up
into little pieces, in each of which a small alteration makes the action PL (in a new PL
structure). By Moise’s approximation theorems, the new PL structure is the pullback of
the old one by a homeomorphism arbitrarily close to the identity, so the action of G can be
approximated by a G action which is PL in the original structure. With some more work,
the nonorientable case can be dealt with too. This settles this problem in the affirmative.

Problem 3.43 (Casson) Does every homology 3-sphere H with an orientation reversing
diffeomorphism have Rohlin invariant zero?

Remarks: If not, then H#H ∼= H#(−H), which bounds an acyclic manifold, giving an
element of order two in θ3

H, the homology bordism classes of homology 3-spheres; this tri-
angulates higher dimensional manifolds (see Problem 4.4). Brieskorn homology 3-spheres
Σ(p, q, r) do not even admit orientation reversing homotopy equivalences. Probably the
homology 3-spheres arising as irregular branched covers of amphicheiral knots have Rohlin
invariant zero; cyclic covers do have invariant zero.

Update: Yes. Casson’s invariant [30,Akbulut & McCarthy,1990] is zero on such homology
3-spheres H and is also an integral lift of the Rohlin invariant.

Problem 3.44 (Meeks) Let M3 be a closed, orientable 3-manifold with universal cover
R3; then G = π1(M) acts on R3 with quotient M3. Let Γ1 and Γ2 be graphs in R3 which
are invariant under G, with π1(R3 −Γi) free, i = 1, 2. Let N1 and N2 be equivariant regular
neighborhoods of Γ1 and Γ2.
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Conjecture: ∂N1 is isotopic to ∂N2.

Update: The conjecture is true and was proved by Frohman and Meeks [348,Frohman &
Meeks, III,1990,Bull. Amer. Math. Soc.]
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NEW PROBLEMS

Problem 3.45 Geometrization Conjecture (Thurston): An orientable, compact, ir-
reducible 3-manifold M with incompressible boundary can be decomposed canonically along
incompressible tori into geometric pieces.

Remarks: There are eight possible model geometries:

• S3 with isometry group SO(4),

• R3 with isometry group consisting of translations and rotations,

• H3 with isometry group PSL(2,C),

• and five others. (A good general reference is [979,Scott,1983a,Bull. London Math.
Soc.]).

A closed M3 is geometric if its universal cover is one of the eight models and π1(M3),
as the deck transformations of the model, is isomorphic to a discrete subgroup of the corre-
sponding group of isometries.

If ∂M is non-empty, then M is geometric means that intM has universal cover equal to
one of the models and π1(M3) is again a discrete group of isometries.

M3 has a canonical collection (possibly empty) of disjoint, imbedded, incompressible
tori; when non-empty, canonical is with respect to the condition that each component of
M − tori is either a Seifert fibered space or is atoroidal (which means that each Z ⊕ Z in
π1(N) is conjugate into π1(∂N)) [538,Jaco & Shalen,1979], [542,Johannson,1979], and [978,
Scott,1980,Amer. J. Math.].

The Geometrization Conjecture then states that the components are geometric, or if the
collection of tori is empty, then M itself is geometric.

The Geometrization Conjecture naturally breaks into three parts according to the struc-
ture of π1(N):

(I) Conjecture: If π1(N) is finite, then N = B3 or N = S3/π1(N) where π1(N) acts on
S3 as a subgroup of SO(4). (Compare Problem 3.37 and see its Update.)

Remarks: The geometric 3-manifolds of the form S3/π1(N) are either S3, lens spaces,
or Seifert fibered spaces over S2 with 3 exceptional fibers of type (2,2,n), (2,3,3), (2,3,4),
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or (2,3,5) (i.e. 1/p+ 1/q + 1/r > 1). (Of course, S3 is a Seifert fibered space with no
exceptional fibers, and lens space have two (or less) exceptional fibers, so (I) conjectures
that finite π1 implies N is Seifert fibered.)

(II) Theorem: π1(N) contains Z⊕Z iff either N contains an incompressible torus or N is
a Seifert fibered space over S2 with 3 exceptional fibers. A discussion of this case can
be found in the Update to Problem 3.5.

(III) Conjecture: If π1(N) is infinite and does not contain a Z⊕Z, then N is hyperbolic.

For a statement of the non-orientable case of the conjecture, see [979,Scott,1983a,Bull.
London Math. Soc.].

Problem 3.46 (Mess) Definition: a smooth 3-dimensional orbifold is a paracompact, Haus-
dorff, stratified space which is covered by open sets, each homeomorphic to R3/G or else to a
quotient R3

x3≥0/G of a half space, where G is a finite group acting linearly on R3 (G ⊂ O(3))
(and preserving the plane {x3 = 0} in the half space case) with the obvious gluing conditions
satisfied; moreover each subset R3/G must be a stratified space in which each stratum is
labeled by the conjugacy class in O(3) of the stabilizer of a point in R3 which projects to
a point of the stratum, and similarly for the case with boundary. In the orientable case, G
can be a cyclic or dihedral group, or can be a subgroup of the full group of isometries of one
of the five Platonic solids; in the non-orientable case, G can also be certain Z/2Z-extensions
of the above groups.

There is a (now standard) notion of covering space for orbifolds. A bad orbifold is one for
which the universal orbifold covering space is not a manifold. An orbifold that is not bad
is good and a good orbifold is very good if there is a finite cover which is a manifold. All
compact 2-orbifolds which are good are very good, but, e.g. S2 with one singular point of
order p > 1 is bad.

Following Thurston, and Bonahon & Siebenmann in [132,1987,Math. Ann.], we make
further definitions.

A 2-orbifold is respectively spherical, discal, toric or annular if it is the quotient of
a sphere, disc, torus or annulus by a finite group of isometries. A compact 3-orbifold is
irreducible if it contains no bad 2-suborbifold and in addition every spherical 2-suborbifold
bounds a discal 3-suborbifold, which by definition is the quotient of a 3-disc by a finite
group of isometries of the standard metric. The prime decomposition theorems of Kneser
and Schubert for 3-manifolds and links generalize to show that every compact 3-orbifold
which contains no bad 2-orbifold can be decomposed by splitting along spherical 2-orbifolds
and capping the boundaries by discal 3-orbifolds (see page 445 of [Bonahon & Siebenmann,
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ibid.]). The collection of spherical 2-orbifolds is not canonical but the resulting collection of
irreducible 3-orbifolds is.

The Orbifold Geometrization Conjecture: [1051,Thurston,1982,Bull. Amer. Math.
Soc.]

(i) Any compact, irreducible 3-orbifold without boundary can be cut along incompressible,
π1-injective, toric 2-orbifolds to get pieces which are geometric.

(ii) Any compact, irreducible 3-orbifold with incompressible boundary can be decomposed
along a canonical family of incompressible toric and annular 2-orbifolds to get pieces
which are geometric.

(iii) Any compact irreducible 3-orbifold with boundary can be decomposed along a family
of incompressible discal, toric and annular 2-orbifolds into pieces which are geometric.
(In this case the collection of pieces is uniquely determined by the orbifold but the family
of 2-orbifolds is not canonical nor even unique up to isotopy. The collection of discal
orbifolds is any collection minimal with respect to the property that cutting along the
discal orbifolds leads to a 3-orbifold with incompressible boundary.)

Preliminary Remarks: In fact this is a generalization of the Geometrization Conjecture,
and those with truly logical minds might wish the two problems to be stated as a single
problem. (ii) is apparently more general than (i) but follows from (i) by a doubling trick due
to Thurston. Similarly, by the doubling trick, (iii) is not essentially more general than the
conjunction of (i) and the theorem asserting the prime decomposition of 3-orbifolds without
bad 2-suborbifolds along spherical 2-orbifolds.

The collection of incompressible 2-orbifolds is canonical, and its existence is not con-
jectural: it is established in [Bonahon & Siebenmann, ibid.] The pieces are orbifolds with
boundary. A piece is either

(a) a spherical 3-orbifold without boundary, or

(b) the quotient of S2 ×R by a cocompact group of isometries, or

(c) the quotient of Nil by a cocompact group of isometries, or

(d) the quotient of R3 by a cocompact group of isometries, or the quotient of R2 × I by a
cocompact group of isometries, or

(e) the quotient of a subset of H2×R which has totally geodesic boundary by a cocompact
group of isometries, or
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(f) the quotient of the universal cover of SL(2,R) by a cocompact group of isometries of
a left invariant Riemannian metric with maximal symmetry, or

(g) the quotient of Solv by a cocompact group of isometries, or

(h) the orbifold associated with a non-elementary, geometrically finite group acting on
hyperbolic 3-space. (In (h), let Γ be the group, and let Ω(Γ) be its discontinuity
domain, a subset of the sphere at infinity. The orbifold is obtained from the quotient
(H3 ∪ Ω(Γ))/(Γ) by attaching toric orbifolds to the cusps so as to obtain a compact
orbifold with boundary.)

Note that the geometry on a geometric piece is not necessarily unique: a manifold with
boundary which admits a H2 × R structure with totally geodesic boundary also admits
a geometric structure modeled on the universal cover of SL(2,R), and it is a matter of
convention whether one should use an H2 × R structure with geodesic boundary or a non-
compact structure with finite volume. Further, the geometry is not canonical: there is a
Teichmüller space of possibilities in the case where the geometry is modeled on H2×R and
there is a finite dimensional moduli space in the case where the geometry is Euclidean.

(Editor’s note: A proof of this conjecture when the singular set is non-empty and 1-
dimensional was announced in Thurston’s Bulletin article above. However, in the intervening
14 years, no proof has appeared nor is the editor aware of anyone else who claims to know
a proof. Despite Thurston’s reputation for accuracy, it seems healthy for this subject to
list the conjecture as an open problem and to encourage the development of an up-to-date,
elegant proof.)

Remarks: The main application of the conjecture would be to show that a compact ori-
entable 3-manifold with a finite group of symmetries could be decomposed along surfaces to
give pieces which are geometric. In fact (using the result of McCullough & Miller mentioned
below) every compact good 3-orbifold with a decomposition into geometric pieces is the quo-
tient of a compact 3-manifold by a finite group action which preserves a family of surfaces
which decompose the 3-manifold into pieces on which the group acts geometrically.

There are related results: [1034,Takeuchi,1988,Trans. Amer. Math. Soc.] and [1033,
Takeuchi,1991,Trans. Amer. Math. Soc.]; [132,Bonahon & Siebenmann,1987,Math. Ann.]
in which the torus decomposition is achieved; [255,Dunbar,1988,Topology Appl.].

Thurston’s original approach was to start with a hyperbolic structure on the complement
of the singular set and then deform it. A detailed outline of this approach is given in notes
of Hodgson, and in the case that the singular set is a 1-manifold, additional details appear
in [1139,Zhou,1990].
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Outside the framework of Thurston’s program, but related to the Conjecture, are [157,
Buchdahl, Kwasik, & Schultz,1990,Invent. Math.] and [634,Kwasik & Schultz,1992a,Invent.
Math.] which show that an action of the icosahedral group on R3 has a fixed point (this is
an important complement to results in Chapters X, XI of [69,Bass & Morgan,1984a]).

A major result on the Orbifold Conjecture is [741,Meeks, III & Scott,1986,Invent. Math.]
which shows that every action of a finite group on a Seifert fibered space with base orbifold
having infinite fundamental group, and every action of a finite group on a product M2 × I ,
where M is a surface, respects the geometry. In addition, see [297,Feighn,1989,Trans. Amer.
Math. Soc.] [499,Hodgson & Rubinstein,1985] in which involutions of lens spaces with one
dimensional fixed point set are shown to be standard.

Further papers (this is surely not an exhaustive list of papers on the Orbifold Conjec-
ture) are [714,Matsumoto & Montesinos-Amilibia,1991,Tokyo J. Math.], [731,McCullough
& Miller,1989,Topology Appl.] and [729,McCullough & Miller,1986a] which shows that an
orbifold with a geometric decomposition is very good and has residually finite fundamental
group (the orbifold analogue of [475,Hempel,1987b]).

Problem 3.47 (Mess & Rubinstein (Generalized Smale Conj.)) A strong version of
the Geometrization Conjecture would give information about the diffeomorphism group of
a 3-orbifold. For comparison, instead of just proving that each compact 2 manifold admits
a metric of constant curvature, one can also show that the inclusion of the identity compo-
nent of the isometry group (of any one of its constant curvature metrics) into the identity
component of the diffeomorphism group is a homotopy equivalence.

It is folk knowledge that the conjectures below would follow naturally if there was a
natural flow on the space of metrics, given by a parabolic differential equation or otherwise,
which deformed the space of all metrics on a given manifold, which admits one of the standard
geometries, to the space of metrics locally isometric to one of the eight model geometries.
Although there are partial results on conjectures A and B below, a uniform approach is
desirable.

(A) Suppose that M is a compact, boundaryless, 3-orbifold, modeled on one of Thurston’s
eight geometries.

(A1) Conjecture: if M is modeled on S3, H3, or Solv, then the inclusion of the isometry
group I(M) of M into Diff(M) is a homotopy equivalence.

Remarks: This conjecture is not true for M = S2 × S1 (because the diffeomorphism
which spins S2× θ by θ is not isotopic to an isometry (θ ∈ S1)). In fact, Diff(S2×S1)
is homotopy equivalent to O(2)×O(3)×ΩO(3) [463,Hatcher,1981,Proc. Amer. Math.
Soc.].
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In the case that M is modeled on S3, the conjecture is true for S3 [464,Hatcher,1983,
Ann. of Math.], Ivanov in [522,Ivanov,1979a,Doklady Akad. Nauk SSSR], [523,
Ivanov,1979b,Doklady Akad. Nauk SSSR], [528,Ivanov,1984,J. Soviet Math.]
proved it is true for most of the cases when M contains a Klein bottle (see Problem
3.36), and McCullough & Rubinstein have claimed the conjecture for the remaining
cases (when M contains a Klein bottle), and for the 3-manifolds with fundamental
group equal to a direct sum of a binary dihedral group with a coprime cyclic group
(see Problem 3.37).

If M is modeled on H3 and has nonempty 1 dimensional singular set, it is known
that the identity component of Diff(M) is contractible, but the corresponding state-
ment is not known if M has isolated singular points. Mostow rigidity ([814,Mostow,
1973], and for the non-compact case, [889,Prasad,1973,Invent. Math.]) shows that
π0Diff(M) maps onto Out(π1(M)) for M a finite volume hyperbolic manifold, and in
fact Out(π1(M)) is a retract of π0Diff(M).

If M is a Haken (or more generally, a non-compact, finite volume) hyperbolic 3-
manifold then [1089,Waldhausen,1968c,Ann. of Math.], together with [Mostow, ibid.]
and [Prasad, ibid.], implies that π0(Diff(M)) = Out(π1(M)). If M is a hyperbolic
3-manifold then π0(Diff(M)) = Out(π1(M)) holds provided that a closed geodesic sat-
isfies a conjecturally true geometric condition, e.g. is the core of a (log3)/2 tube [360,
Gabai,1994b,Bull. Amer. Math. Soc.], [361,Gabai,1995a]. This condition is always
true after passing to a finite sheeted covering space [359,Gabai,1994a,J. Amer. Math.
Soc.]. Mostow [ibid.] and Prasad [ibid.] show that a hyperbolic metric on a finite
volume (not necessarily closed) hyperbolic 3-manifold is unique up to an isometry ho-
motopic to idM . The additional fact π0(Diff(M)) = Out(π1(M)) implies the stronger
statement that hyperbolic metrics are unique up to isotopy or equivalently the space
of hyperbolic metrics is path connected.

The conjecture is known if M is a Solv manifold or Solv orbifold, by the combination
of the fact that a Solv manifold is necessarily Haken, the work of Meeks & Scott [741,
1986,Invent. Math.] and the work of Hatcher and Ivanov on spaces of diffeomorphisms,
except if M is an orbifold with isolated singular points, in which case it is not known,
although the induced map on components is a bijection by the work of Meeks & Scott
[ibid.].

For an aspherical space X, the space Eq(X) of homotopy self-equivalences of X is
homotopy equivalent (as an H-space) to the discrete group Out(π1(X)), except when
π1(X) has a non-trivial center in which case each component has the homotopy type of
a K(Z(π1(X), 1)) and the group of components is Out(π1(X)). For a hyperbolic mani-
fold of finite volume (which is not necessarily closed) and dimension> 2, Out(π1(X)) is
canonically isomorphic to the isometry group of the manifold by Mostow–Prasad rigid-
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ity [ibid.]. Hatcher showed that the PL homeomorphism group of a Haken manifold
M is naturally homotopy equivalent to the H-space Eq(M); Ivanov proved the same
for the diffeomorphism group modulo the Smale conjecture, (see [461,Hatcher,1976,
Topology], [521,Ivanov,1976,Issledovaniya po Topologii 2, Zapiski Nauchnykh Semi-
narov Leningradskogo Otdeleniya Matematicheskĭı in-ta. im. Steklova]).

(A2) Conjecture: if M is modeled on R3 or Nil then the inclusion of the group Aff(M) of
affine maps from M to itself into the group Diff(M) is a homotopy equivalence.

Remarks: This conjecture naturally breaks into two parts: that the induced map on
components is an isomorphism (which is known by the work of Meeks & Scott [ibid.]),
and that the inclusion of identity components, Aff0M ↪→ Diff0(M), is a homotopy
equivalence. Here the essential difficulty occurs when M is a non-Haken manifold or
an orbifold with isolated singular points.

(A3) Conjecture: if M is modeled on H2×R or S̃L(2,R), then the space of Seifert fibered
space structures onM is contractible. Equivalently, the inclusion of the fiber preserving
diffeomorphisms into Diff(M) is a homotopy equivalence. Equivalently, the inclusion
of the identity component of the isometry group of M into the identity component of
the diffeomorphism group of M is a homotopy equivalence.

Remarks: The conjecture is true if M is a Haken manifold, by reformulations of
results of Hatcher and Ivanov [ibid.].

The conjecture that the space of Seifert fibered space structures is contractible is made
only for these two geometries because it is not true in general. For example, the SFS
structures on T 3 are not connected; the the space of SFS structures on S3 which are
isomorphic to the Hopf fibration has the homotopy type of S2; on some Nil manifolds
or Euclidean manifolds the SFS structure is not unique up to homotopy.

(B) This is a reformulation of the conjecture: let G be a finite group acting isometrically on a
geometric manifold M . Then the inclusion of the {identity component of the centralizer
of G in the isometry group of M} into the {identity component of the centralizer of G
in the diffeomorphism group of M} is a homotopy equivalence.

Remarks: There are good reasons why one should only look at the identity com-
ponent. One reason is related to the fact that for certain hyperbolic 2 dimensional
orbifolds the mapping class group has a nontrivial finite kernel in its action on the
Teichmüller space of the orbifold, and the other is the existence of Dehn twists (in
the sense of Johannson) on vertical tori in Seifert fibered spaces which have hyperbolic
bases with first Betti number positive.

Conjecture (A) is equivalent to the conjunction of (B) and the statement that any
smooth action of a finite group on a geometric manifold M is conjugate by a diffeo-
morphism isotopic to the identity to an action which is geometric with respect to a
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geometry which lies in the same component of the space of geometric structures as
the original geometry on M . (The awkwardness of the statement is inevitable given
the existence of Teichmüller space and our incomplete knowledge on the problem of
whether homotopic diffeomorphisms are isotopic (see Problem 3.95).)

Problem 3.48 (Kontsevich) Let M3 be a connected 3-manifold with non-empty bound-
ary, and let BDiff(M rel ∂M) be the classifying space for the group of diffeomorphisms of
M which are the identity on ∂M .

Conjecture: BDiff(M rel ∂M) has the homotopy type of a finite CW-complex.

A particularly interesting case occurs when M is equal to the complement of the unlink
of n components in S3, n > 1, that is, the connected sum of n solid tori.

Remarks: (McCullough) The conjecture does not hold for closed 3-manifolds. Suppose M
is a closed Haken manifold. By [461,Hatcher,1976,Topology], each component of Diff(M)
is contractible, hence BDiff(M) is a K(π0(Diff(M)), 1). But whenever π0(Diff(M)) contains
torsion (e. g. is a nontrivial finite group, as happens in many hyperbolic examples), there
can be no finite-dimensional complex which is a K(π0(Diff(M)), 1). However, the conjecture
is true for M#B3 (M punctured) when M is Haken (to see this, use the homotopy exact
sequence of the fiber bundle with base space Emb(B3,M3) and total space Diff(M)).

Problem 3.49 (McCullough) Generalizing the construction of Dehn twist homeomor-
phisms of 2-manifolds, define a Dehn homeomorphism as follows: Let (F n−1×I, ∂F n−1×I) ⊂
(Mn, ∂Mn), where F is a connected codimension-1 submanifold, and F × I ∩∂M = ∂F × I .
Let 〈φt〉 be an element of π1(Homeo(F ), 1F ), i.e. for 0 ≤ t ≤ 1, φt is a continuous family of
homeomorphisms of F such that φ0 = φ1 = 1F . Define h ∈ π0(Homeo(M)) = H(M) by

h =

{
h(x, t) = (φt(x), t) if (x, t) ∈ F × I
h(m) = m if m /∈ F × I

Note that when π1(Homeo(F )) is trivial, a Dehn homeomorphism must be isotopic to the
identity. Define the Dehn subgroup D(M) of H(M) to be the subgroup generated by Dehn
homeomorphisms.

The following table lists π1(Homeo(F )) for connected 2-manifolds, and the names of the
corresponding Dehn homeomorphisms of 3-manifolds.
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F π1(Homeo(F )) Dehn homeomorphism
S1 × S1 Z× Z Dehn twist about a torus
S1 × I Z Dehn twist about an annulus
D2 Z twist
S2 Z/2Z rotation about a sphere
RP2 Z/2Z rotation about a projective plane

Klein bottle Z Dehn twist about a Klein bottle
Möbius band Z Dehn twist about a Möbius band
χ(F ) < 0 0

(A) Dehn Subgroup Conjecture: Let M be a compact 3-manifold. Then D(M) has
finite index in H(M).

Remarks: For M orientable, (A) is true if it is true for irreducible manifolds [726,
McCullough,1986]. Johannson (Corollary 27.6 in [542,Johannson,1979]) proved (A) for
boundary-irreducible Haken manifolds, and this was extended to all Haken manifolds
in [729,McCullough & Miller,1986a].

Denote by D>0(M) the subgroup of D(M) generated by Dehn homeomorphisms using
D2, S2, and RP2 (the surfaces of positive Euler characteristic).

By an argument similar to the proof of Proposition 1.2 of [727,McCullough,1990], one
can prove that if ∂M is incompressible, then D>0(M) is a finite abelian group.

When the boundary of M is compressible, the following results were proved in [725,
McCullough,1985,Topology]:

• If ∂M is almost incompressible, then D>0(M) is a finitely generated abelian group
(almost incompressible means that in each boundary component F of M , there is at
most one simple closed curve up to isotopy that bounds a disc in M but does not
bound a disc or Möbius band in F );

• If ∂M is not almost incompressible, then D>0(M) is infinitely generated and non-
abelian.

(B) Kernel Conjecture: D>0(M) has finite index in the kernel of H(M)→ Out(π1(M)).

Remarks: In general, D>0(M) need not equal the kernel, as shown by the example
of reflection in the fibers of an I-bundle. For orientable M containing no fake 3-cells,
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(B) is true if it is true for irreducible M [727,McCullough,1990]. The main case in
which (B) is unknown is when M is irreducible, aspherical and not sufficiently large,
although even here some cases are known [360,Gabai,1994b,Bull. Amer. Math. Soc.],
[361,Gabai,1995a].

Define Out∂(π1(M)) to be the subgroup of Out(π1(M)) consisting of the automorphisms
φ such that for every boundary component F of M , there exists a boundary component G
so that φ(i#(π1(F ))) is conjugate in π1(M) to j#(π1(G)), where i:F → M and j:G → M
are the inclusions. This subgroup contains the image of H(M)→ Out(π1(M)).

(C) Image Conjecture: The homomorphism H(M)→ Out∂M(π1(M)) has image of finite
index.

Remarks: In general, the image is not all of Out∂M(π1(M)). Again, (C) is true if it
is true for irreducible manifolds [727,McCullough,1990].

(B) and (C) combine to give the following conjecture, where almost exact means that
images have finite indexes in kernels (rather than equaling kernels as in exactness).

(D) Almost Exactness Conjecture: Let M be a compact 3-manifold. Then the sequence

1→ D>0(M)→H(M)→ Out∂(π1(M))→ 1

is almost exact.

(E) Finiteness Conjecture: Let M be closed, irreducible, but not sufficiently large. Then
H(M) is finite.

Remarks: Note that (E) follows from the Dehn Subgroup Conjecture (A). (E) has
been proven by Gabai for many aspherical but not sufficiently large manifolds [360,
Gabai,1994b,Bull. Amer. Math. Soc.], [361,Gabai,1995a]. Also, H(M) should be
finite when M = S3/G for G ⊂ SO(4) for then it is conjectured that H(M) =
π0(Isom(M)) (Problem 3.47).

(F) Finite Presentation Conjecture: H(M) is finitely presented.

Remarks: For orientable M , (F) is true if it is true for irreducible manifolds [465,
Hatcher & McCullough,1990], and is known in many cases, for example lens spaces [129,
Bonahon,1983b,Topology] and Haken manifolds [408,Grasse,1989,Topology Appl.],
[1092,Waldhausen,1978b].

Recall that a group is said to have a property virtually if some finite-index subgroup
has the property.
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(G) Virtual Geometric Finiteness Conjecture: Let M be a compact 3-manifold. Then

(i) H(M) is virtually torsion free.

(ii) H(M) is virtually of finite cohomological dimension.

(iii) H(M) is virtually geometrically finite (a group is geometrically finite if it is the
fundamental group of a finite aspherical complex).

Remarks: Since (iii) implies (ii) and (ii) implies (i), this is really a sequence of three
successively stronger conjectures. All hold for compact 2-manifolds ([442,Harer,1986,
Invent. Math.], [443,Harer,1988], [452,Harvey,1981], [451,Harvey,1979]), for Haken man-
ifolds [728,McCullough,1991,J. Differential Geom.], and hold trivially in the cases
where the mapping class group is known to be finite. For non-irreducible 3-manifolds,
the following is a preliminary question. Define the rotation subgroup R(M) to be the
subgroup generated by rotations about 2-spheres and 2-sided projective planes in M ;
it is a finite normal abelian subgroup of H(M). Is there a finite-index subgroup of
H(M) that intersects R(M) trivially? If not, replace H(M) by H(M)/R(M) in the
conjecture.

Problem 3.50 (Mess) LetM3 be a closed, hyperbolic 3-manifold (or just a closed, atoroidal,
irreducible, aspherical 3-manifold). Here are some variants of a question of Waldhausen,
namely:

(A1) Does M3 have a finite cover which is Haken?

Remarks: This is Problem 3.2 for hyperbolic 3-manifolds, and the Update lists posi-
tive results.

(A2) If M3 is Haken, does M have a finite cover M̃ with positive first betti number b1 =
rankH1(M̃ ;Q)?

(A3) If b1(M) > 0, does M have finite covers with arbitrarily large b1?

(B1) Does π1(M) contain a subgroup G isomorphic to the fundamental group of a (neces-
sarily) hyperbolic closed surface Fg? (Equivalently, does M contain an incompressible
immersed closed surface?)

Remarks: Yes if there exists an immersed surface with principal curvatures every-
where ≤ 1 in absolute value.

(B2) If G = π1(Fg) ⊂ π1(M), does M have a finite cover which is Haken? has b1 > 0? has
b1 arbitrarily large?
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(B3) If G = π1(Fg) ⊂ π1(M), does M have a finite cover M̃ in which G is the fundamental
group of an imbedded surface? or at least a finite index subgroup ofG is the fundamental
group of an imbedded surface?

(C) Does π1(M) contain a subgroup G ∼= π1(Fg) such that G is separable in π1(M)?

Remarks: If so, then M has finite covers with arbitrarily large collections of disjoint,
homologically independent surfaces whose fundamental groups are finite index sub-
groups of G. (G separable in π1(M) means that for any x ∈ π1(M)−G, there exists a
finite index subgroup of π1(M) which contains G but not x.)

Problem 3.51 (Thurston) Does a hyperbolic 3-manifold M have a finite cover which is a
surface bundle over S1?

Remarks: A Seifert fibered space has a finite cover which is a circle bundle over a surface.
But not all closed 3-manifolds have finite covers which are bundles.

A closed Seifert fibered space has a finite cover which fibers over S1 iff its Euler number or
its orbifold characteristic is zero (the two cases can be found in [837,Neumann & Raymond,
1978] and [354,Gabai,1986]).

Luecke & Wu [682,1995] give conditions under which a graph manifold (that is, the union
of Seifert fibered spaces along torus boundary components) admits a finite cover which is a
bundle; necessary and sufficient conditions in terms of a kind of incidence matrix associated
to the manifold can be found in [836,Neumann,1995].

Reid gives the first example of a non-Haken, hyperbolic 3-manifold with a finite cover
which fibers over S1 in [922,Reid,1995,Pacific J. Math.]; the methods are arithmetic and
give other examples.

On the other hand, such a cover must be complicated because Boileau and S. Wang show
[125,Boileau & Wang,1995] that for any integer n > 0 there exist infinitely many closed,
orientable, hyperbolic 3-manifolds M with first Betti number n, such that no tower of abelian
coverings over M contains a surface bundle over S1.

Problem 3.52 (Canary) (A) Conjecture (Marden): If M3 is a complete hyperbolic
3-manifold and π1(M) is finitely generated, then its ends are topologically tame, i.e.
they are all products F 2×R for F 2 a closed, orientable surface. (This is equivalent to
conjecturing that M is the interior of a compact 3-manifold (see Problem 3.8).)

Remarks: The conjecture first appears in [693,Marden,1974,Ann. of Math.]. It is
true if π1(M) is not a free product [130,Bonahon,1986,Ann. of Math.], and in other
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cases, [174,Canary & Minsky,1995], [853,Ohshika,1995a]. A good general reference is
[171,Canary,1993b].

(B) Ahlfors’ Measure Conjecture: If Γ is a finitely generated Kleinian group, then its
limit set either has measure zero or is the entire sphere at infinity. Moreover, if its
limit set is the entire sphere at infinity, then Γ acts ergodically on the sphere at infinity.

Remarks: Conjecture (A) implies Ahlfors’ Conjecture which was first made, and
proved for geometrically finite Kleinian groups, in [11,Ahlfors,1966,Proc. Nat. Acad.
Sci. U.S.A.]. Thurston proved Ahlfors’ Conjecture for geometrically tame hyperbolic 3-
manifolds, and D. Canary [170,1993a,J. Amer. Math. Soc.] proved it for topologically
tame Kleinian groups, so (A) implies (B).

Conjecture (A) would also imply that the geodesic flow on a hyperbolic 3-manifold
associated to a finitely generated Kleinian group is ergodic iff its limit set is the entire
sphere at infinity (this is a natural ergodic theoretic extension of the Ahlfors’ measure
conjecture).

(Recall that a Kleinian group is a discrete subgroup of PSL(2,C), whereas a Fuchsian
group is a discrete subgroup of PSL(2,R).)

(C) Conjecture: The fundamental group of a finite volume hyperbolic 3-manifold has the
finitely generated intersection property (FGIP) iff it does not have a finite cover which
fibers over the circle (see Problem 3.51).

Remarks: (A) also implies (C) (for a discussion of this, see [172,Canary,1994]). Every
co-infinite volume Kleinian group has the FGIP [476,Hempel,1987c], [36,Anderson,
1991,Complex Variables Theory Appl.], whereas, for example, the fundamental group
of a surface (of negative Euler characteristic) bundle over S1 does not have the FGIP
[535,Jaco,1980]. (Definition: a group G has the FGIP if the intersection of every pair
of finitely generated subgroups of G is again finitely generated.)

(D) Conjecture: A Kleinian group has the FGIP iff it has infinite covolume.

Remarks: (D) would follow from (C) and Thurston’s conjecture (Problem 3.51) that
every hyperbolic 3-manifold has a finite cover which fibers over the circle.

(E) Conjecture: Two isomorphic Kleinian groups, G1 and G2, have topologically conjugate
actions on the 2-sphere at infinity iff they are quasiconformally conjugate.

Remarks: The actions are topologically conjugate if there exists a homeomorphism
h : S2 → S2 such that the following diagram commutes (where ι : G1 → G2 is the
isomorphism):
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G1 × S
2

- S2

G2 × S
2

ι

?

h

- S2
?

h

The actions are quasiconformally conjugate if h is quasiconformal (so the implication
⇐ is obvious).

The conjecture is true for geometrically finite Kleinian groups [693,Marden,1974,Ann.
of Math.]. It is also true if the quotient manifold has a lower bound on the injectivity
radius and the group is a closed surface group [771,Minsky,1994,J. Amer. Math. Soc.]
or if the group is topologically tame [854,Ohshika,1995b].

Problem 3.53 (Christy) (A) Which hyperbolic 3-manifolds have Anosov flows?

Remarks: M3 has an Anosov flow if the tangent bundle TM splits as a Whitney sum
of line bundles ES ⊕ F ⊕EU where F is always tangent to the flow φt, the splitting is
preserved by Dφt, points in ES converge exponentially to 0 as t increases, and points
in EU converge exponentially to 0 as t decreases, (see [39,Anosov,1969,Proc. Steklov
Inst. Math.] for a precise and detailed definition).

If M3 has an Anosov flow, then it is irreducible, [851,Novikov,1963,Trans. Moscow
Math. Soc.], [169,Camacho & Lins Neto,1985], [364,Gabai & Oertel,1989,Ann. of
Math.], and π1(M) grows exponentially [694,Margulis,1967,Uspehi Mat. Nauk].
The latter condition rules out Euclidean and Nil manifolds.

A Seifert fibered 3-manifold has an Anosov flow iff it is a finite cover of the unit
tangent bundle of a hyperbolic orbifold [374,Ghys,1984,Ergod. Th. & Dynam. Sys.],
[66,Barbot,1995].

If π1(M) is solvable, then an Anosov flow is conjugate to a suspension of an Anosov
diffeomorphism of a surface, [876,Plante,1981,J. London Math. Soc.], [64,Barbot,
1992].

Given an Anosov flow on M and a closed orbit C, then there is a line of Dehn surgeries
on C which also have Anosov flows [399,Goodman,1983] and [342,Fried,1983,Topol-
ogy]. This gives examples of hyperbolic 3-manifolds with Anosov flows; there are no
known hyperbolic 3-manifolds without Anosov flows.

(B) Does every irreducible, atoroidal 3-manifold with an Anosov flow have a hyperbolic
metric?
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(C) Given an integer N , does there exist a hyperbolic 3-manifold with at least N Anosov
flows which are topologically inequivalent.?

Remarks: Two Anosov flows are topologically equivalent if there exists a homeomor-
phism of M taking oriented orbits to oriented orbits. There exist T 2-bundles over S1

for which there exists an Anosov flow which is not topologically equivalent to the same
flow with time reversed; these bundles are characterized by the fact that their mon-
odromies are not conjugate to their inverses. Geodesic flows on tangent circle bundles
to surfaces are topologically equivalent to their time reversals. Barbot [65,1994] eluci-
dated the construction of Bonatti & Langevin [134,1994,Ergod. Th. & Dynam. Sys.]
and showed that their example lives on a 3-manifold N which admits two topologically
inequivalent Anosov flows which are not related by time reversal.

Problem 3.54 (Christy) The geodesic flow (which is Anosov) on the tangent S1 bundle
of a closed, hyperbolic surface without boundary can be constructed by Dehn surgery on
closed orbits of the suspension flow of a mapping torus (a T 2 bundle over S1) [342,Fried,
1983,Topology], [399,Goodman,1983].

Question: Does every Anosov flow on a closed compact 3-manifold arise in this way?
If so, can it even arise from the mapping torus with monodromy (2

1
1
1
) ?

Problem 3.55 (Thurston) Does every closed hyperbolic 3-manifold admit a 2-dimensional
foliation without Reeb components?

Remarks: A possible generalization, if the hyperbolic part of the Geometrization Conjecture
fails (see Problem 3.45), is to replace the hypothesis of hyperbolicity by prime, atoroidal,
infinite π1. Also, one can ask in general if a Reebless foliation can by used to construct a
geometric structure on a 3-manifold.

Problem 3.56 (Thurston) Given a hyperbolic 3-manifold with a foliation without Reeb
components, then all leaves lift to topological planes in H3 which are conformally equivalent
to the interior of the unit disk D in C (see [175,Candel,1993,Ann. Sci. École Norm. Sup.
(4)], which produces a metric on M which is smooth along the leaves and continuous in the
transverse direction, and for which all leaves have constant curvature −1).

Question: Does the inverse map of intD into H3 extend continuously over ∂D to the
sphere at infinity?

Remarks: This is true for surface bundles over S1 [177,Cannon & Thurston,1995] (with
published proof in [771,Minsky,1994,J. Amer. Math. Soc.]), and for depth one foliations
[298,Fenley,1992,J. Differential Geom.].
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Problem 3.57 (Mess) Given a compact, hyperbolic 3-manifold M , show that a finite it-
eration of the following operation results in a link complement in S3: remove the shortest
geodesic and put a complete hyperbolic structure on the resulting manifold.

Remarks: The complement of the geodesic is atoroidal so it has a unique (up to diffeomor-
phism) hyperbolic structure. However it is not known that the hyperbolic structure on the
filled manifold is obtained from the hyperbolic structure on the complement by a deformation
through cone manifolds.

Problem 3.58 (Cooper) Given K > 0, is there a hyperbolic, rational homology 3-sphere
M such that the minimum over all points p ∈M of the injectivity radius at p is bigger than
K?

Remarks: Presumably the answer is yes. If N is a closed hyperbolic 3-manifold then N has
finitely many geodesics shorter than a given constant, so N has a finite cover with arbitrarily
large injectivity radius, which, using a no answer to the problem, is not a rational homology
sphere and therefore has b1 > 0. Long & Reid [676,1995] use the fact that the group of a
hyperbolic 3-manifold is residually simple to show that a no answer implies that a hyperbolic
rational homology sphere has infinite virtual betti number. (A groupG is residually P , where
P is a property of a group, if the following statement holds for any element g ∈ G: there
exists a group H with property P and an epimorphism h : G → H which is non-trivial on
g.) The Long & Reid proof is that there are many surjections of π1(N) onto simple groups
of the form SL(2, Fp) with Fp a finite field, giving covers Np with rational homology. One
now uses simplicity plus the fact that N has no rational homology to argue that the common
cover of these covers has large b1.

Problem 3.59 If a complete, orientable, hyperbolic, 3-manifold with finite volume has cusps,
show it has an immersed, closed, orientable, incompressible surface with no accidental parabol-
ics.

Remarks: The hyperbolic structure corresponds to a representation of π1 to PSL(2,C)
and all elements of a Z⊕ Z must go to parabolic elements. Any other such elements called
accidental parabolic.

Problem 3.60 (C. C. Adams) Hyperbolic 3-manifolds come in many flavors: orientable
or not, closed or with totally geodesic boundaries (which are hyperbolic surfaces) or with
one or more cusps (homeomorphic to S1 × S1 × R or to K × R in the non-orientable case
where K is the Klein bottle); one can also consider orbifolds (see definition in Problem 3.46).
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The map taking volumes of hyperbolic 3-orbifolds is a finite-to-one map whose image
is a well ordered set of the reals S (Jørgensen and Thurston for manifolds, [256,Dunbar
& Meyerhoff,1994,Indiana Univ. Math. J.] for orbifolds). The limit points of the set
of volumes of the closed, orientable, hyperbolic 3-manifolds all correspond to volumes of
hyperbolic 3-manifolds, each with a single cusp. Similarly, the limit points of the set of
volumes of the orientable, hyperbolic 3-manifolds with n cusps correspond to volumes of
orientable, hyperbolic 3-manifolds with n+ 1 cusps. Filling in an orientable cusp by a Dehn
surgery lowers volume (when the surgery results in a hyperbolic manifold, as it does for all
but a finite number of Dehn surgeries), whereas a non-orientable cusp can only be filled in
in one way, and then the hyperbolic structure may or may not extend. The volume of a
non-orientable 3-manifold is half that of its oriented cover, so the smallest volumes in the
various cases could be non-orientable.

(A) Determine the closed, orientable, hyperbolic 3-manifold of least volume.

Remarks: In 1983, Przytycki conjectured that the punctured torus bundle with mon-
odromy (−2

−1
−1
−1

) (see Problem 1.77) and Dehn filling (3,1) was hyperbolic and had
smallest volume. This manifold can be also described by (5,1), (5,2) surgery on the
right handed Whitehead link (drawn below in Figure 3.60.1; with crossings which are
right handed with respect to orientations of the components of the link), and Weeks
(independently) has shown it is hyperbolic with volume 0.9247... [1100,Weeks,1985].
This manifold is arithmetic and has recently been shown to be the smallest such [202,
Chinburg, Friedman, Jones, & Reid,1995].

Figure 3.60.1.

In the closed, orientable case, the least volume is ≥ .00115 [368,Gehring & Martin,
1991,J. Reine Angew. Math.], and if the first Betti number is ≥ 3, then the least
volume is ≥ 0.92 [230,Culler & Shalen,1992,J. Amer. Math. Soc.].

(B) Determine the non-orientable, closed, hyperbolic 3-manifold of least volume.
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Remarks: The smallest so far has volume 2.02988... (J. Weeks). It is constructed
from a single surgery on any of several 3-manifolds obtained by gluing together faces
of a small number of ideal tetrahedra. Surprisingly, its volume is precisely twice that
of the Gieseking manifold below, which is non-orientable with one cusp.

(C) Determine the cusped, orientable, hyperbolic 3-manifold of least volume. A special case
is to determine the hyperbolic knot in S3 of least volume.

Remarks: The conjectured answer in both cases is the figure-8 knot complement and
also, in the first case, the manifold obtained by (5,1) surgery on one component of the
right handed Whitehead link.

(D) Determine the n-cusped hyperbolic 3-manifold of least volume for n ≥ 3.

Remarks: For n = 1, the least volume is v0 = 1.01494..., (which equals the vol-
ume of the ideal tetrahedron in hyperbolic 3-space), for the non-orientable Gieseking
3-manifold [2,Adams,1987,Proc. Amer. Math. Soc.], [375,Gieseking,1912]. This man-
ifold is constructed from the ideal tetrahedron by identifyingA with A′ and B with B′

in a way which preserves the orientations on the edges in Figure 3.60.2; its double cover
is the figure-8 knot complement. For n = 2, the least volume is 2v0 and for n ≥ 3, the
least volume is known to be at least nv0 [3,Adams,1988,J. London Math. Soc.].

A
0

A

B
B

0

Figure 3.60.2. Gieseking manifold
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Figure 3.60.3.

(E) For each n, determine the hyperbolic 3-manifold of least volume with n orientable cusps.

Remarks: It is expected that such a manifold is orientable. (The volume of such a
manifold will be the smallest n-fold limit point of the set of all volumes of hyperbolic
3-manifolds.)

(F) Determine the smallest volume orientable and non-orientable hyperbolic 3-orbifolds.

Remarks: The smallest known orientable example is the following: consider the tetra-
hedron T imbedded in H3 so that its dihedral angles are π/5, π/5, π/3, π/2, π/2, π/2,
as drawn in Figure 3.60.4. Tesselate H3 by reflections of T through its faces. Take the
quotient of H3 by the orientation preserving symmetries of this tesselation (including
the rotation by π about the line L). This quotient is S3 with orbifold singular set
drawn in Figure 3.60.4. This is the smallest example among all orbifolds with at least
one edge with orbifold degree ≥ 4 [369,Gehring & Martin,1994,Math. Res. Lett.] and
the smallest among all orbifolds arising from symmetries of tetrahedral tesselations.
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Figure 3.60.4.

(G) Consider the punctured torus bundle P with monodromy (3
1

2
1
)

The Dehn fillings (3, 1) and (5,−1) of P both have the same volume [85,Betley, Przy-
tycki, & Zukowski,1986,Kobe J. Math.].

Twins conjecture: These are the smallest volume hyperbolic twins.

(H) (Przytycki) The Dehn fillings (µ, λ) and (µ + 2λ,−λ) of P are hyperbolic twins for
all µ and λ [ibid.]. Is each pair of these twins commensurable (that is, do they have a
common finite cover)?

Further remarks: The six smallest cusped, hyperbolic 3-orbifolds are known and they are
all orientable ([757,Meyerhoff,1985,Bull. Amer. Math. Soc.] for the first of the six, and
[5,Adams,1992a] for the rest). All six are arithmetic [839,Neumann & Reid,1992b]. The
smallest orientable one is Q = H3/Γ where Γ = PGL(2,O3) and O3 is the ring of integers
in Q(

√
−3); Q is the double cover of the smallest, cusped, non-orientable orbifold whose

volume is v0/24.

The three smallest limit volumes for hyperbolic 3-orbifolds are known [4,Adams,1991,
J. Differential Geom.]. The four smallest orientable (and non-orientable), multiply cusped,
hyperbolic, 3-orbifolds are known [6,Adams,1992b,Indiana Univ. Math. J.]. The smallest
arithmetic, hyperbolic, 3-orbifold [203,Chinburg & Friedman,1986,Invent. Math.] is known.

The smallest compact, hyperbolic 3-manifold with totally geodesic boundary [602,Kojima
& Miyamoto,1991,J. Differential Geom.], and the smallest hyperbolic 3-manifold with closed
totally geodesic boundary of any given genus≥ 2 [772,Miyamoto,1994,Topology] are known.

• The following notions are useful in the next few problems.

A subgroup of PSL(2,C) is arithmetic (or a hyperbolic 3-manifold is arithmetic) if the
subgroup arises by the following construction.
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Start with a field k which imbeds in C in only one way (plus its conjugate). This happens
iff k = Q(λ) where λ is a complex root of an irreducible Q-polynomial P with exactly two
complex roots, λ, λ̄, and all others real. Now take a quaternion algebra A over k (a semi-
simple algebra over k4) which is ramified at all real imbeddings (i.e. each real root of P
gives a real imbedding τ : k → R (e.g. Q( 3

√
2) = Q[x]/(x3 − 2)) and then A ⊗τ R =

Hamiltonian quaternions). Then take an order (a subring O of A which is, for Ok = ring of
integers of k, an Ok-module of dimension 4 over Ok and O generates A over k). Then take
the invertible elements O∗ in O; O∗ imbeds naturally as a subgroup of SL(2,C) (using the
complex imbedding τ : k → C, A ⊗τ C = MC(2 × 2), so O∗ ⊂ A ⊂ SL(2,C) = invertible
elements of MC(2× 2)). Then O∗/±1 is an arithmetic subgroup, as is any subgroup which
is commensurable with an O∗/±1.

A subgroup Γ of PSL(2,C) is not arithmetic if the set of subgroups commensurable with
Γ contains a maximal (under inclusion) element Γ0 (Margulis); however, in the arithmetic
case there are infinitely many maximal subgroups in the commensurability class of Γ [137,
Borel,1981,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)].

Problem 3.61 (Neumann) What fields occur as invariant trace fields of hyperbolic 3-
manifolds?

Remarks: The trace field of M = H3/Γ is the field

K(Γ) := Q({tr(γ)|γ ∈ Γ}).

The invariant trace field is k(Γ) := K(Γ(2)) where Γ(2) ⊂ Γ is the subgroup generated by
squares of elements of Γ. It is a commensurability invariant [920,Reid,1990,Bull. London
Math. Soc.]. A number field occurs as the invariant trace field of an arithmetic hyperbolic
3-manifold iff it has exactly one conjugate pair of complex imbeddings. Thus such fields
occur. But for fields with more than one conjugate pair of complex imbeddings, very little is
known (other than many examples). Note that the invariant trace field comes with a specific
imbedding k(Γ) ⊂ C, so one can refine the question to ask what pairs (field, imbedding)
occur.

There are additional related invariants: the invariant quaternion algebraA(Γ) and the set
P (Γ) of primes of k(Γ) at which traces of elements of Γ(2) are non-integral [838,Neumann &
Reid,1992a]. One can ask which of these are realized; arithmetic manifolds realize precisely
the cases with k(Γ) as described above, A(Γ) ramified at each real imbedding of k(Γ), and
P (Γ) = ∅.

Problem 3.62 (Neumann) Let k be a number field with exactly one conjugate pair of
complex imbeddings. Then there exist arithmetic 3-manifolds M with invariant trace field
k.
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(A) Conjecture: The Chern–Simons invariant CS(M) is rational iff k = k̄.

Remarks: The if part is true [843,Neumann & Yang,1995]. As an example, k =
Q( 3
√

2) should give an irrational Chern–Simons invariant. The conjecture is a special
case of the Ramakrishnan Conjecture [914,1989], which generalizes a conjecture of
Milnor [768,1983,L’Enseign. Math.] (see [843,Neumann & Yang,1995] for a discussion
and more general conjectures). See also Problem 3.63.

(B) What is the number theoretic significance of CS(M)?

Remarks: CS(M) is expected to have number theoretic meaning since it is intimately
related to vol(M) which does (it is a rational multiple of π2Jk(2) where Jk is the Zeta-
function for k) [137,Borel,1981,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)]. Note that
CS(M) is determined, up to rational multiples, by k (this uses the assumption that k
has a unique pair of complex imbeddings, but not that M is arithmetic [Neumann &
Yang, ibid.]).

Problem 3.63 (J. D. S. Jones) Is the Chern–Simons invariant of a closed hyperbolic 3-
manifold M rational?

Remarks: Here closed means compact with no boundary and rational means a rational
multiple of a fixed constant (there are constants involved in the definition of the Chern–
Simons invariant). One way to phrase the question so that it is independent of these constants
is as follows:

Is the ratio of the Chern–Simons invariant of any two closed hyperbolic 3-manifolds ra-
tional?

This problem is related to the calculation of the algebraic K-group K3(C) as follows.
By definition, the group K3(C) is π3(BGL+(C)). Here BGL(C) is the classifying space of
the group GL(C) regarded as a discrete group and the superscript + means Quillen’s plus
construction ([907,Quillen,1970], [908,Quillen,1975]); attach 2 and 3 cells to abelianize π1

and preserve homology.

A closed hyperbolic 3-manifold M equipped with a spin structure α determines an ele-
ment [M,α] in K3(C) by the following procedure. The spin structure gives a representation
π1(M) → SL(2,C) lifting the canonical homomorphism π1(M)→ PSL(2,C)). This gives a
map M → BSL(2,C) and composing with

BSL(2,C)→ BGL(C)→ BGL+(C)

gives a map
M → BGL+(C).
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Now BGL+(C) is an N-fold loop space for any N ; say ΩNYN ' BGL+(C). Thus taking
adjoints gives a map

ΣNM → YN .

Now since M is a closed 3-manifold, a spin structure determines a stable framing and hence,
by the Pontryagin–Thom construction, a degree one map

SN+3 → ΣNM.

Thus, composing with the map ΣNM → YN , we get an element

[M,α] ∈ πN+3(YN) = K3(C).

There are, of course, other ways of constructing this invariant.

There is a homomorphism
r : K3(C)→ C/Z

which is known as a secondary Chern character, or a regulator. This homomorphism is
studied in detail in [561,Karoubi,1987] and also [550,Jones & Westbury,1995] (where it is
called the e-invariant in algebraic K-theory). It is proved in [Jones & Westbury, ibid.] that

r[M,α] =
1

2
CS(M)−

i

4π2
vol(M)

where CS is the Chern–Simons invariant, and vol is the volume. Thus, if the imaginary
part of r is always rational then it follows that the Chern–Simons invariant of every closed
hyperbolic 3-manifold is rational.

What is known about K3(C)? Suslin has shown that K3(C) is isomorphic to F ⊕ Q/Z
where F is a uniquely divisible group [1019,Suslin,1984,J. Pure Appl. Algebra]. There are
many well-known elements in K3(C). The easiest to describe are the products xyz where
x, y, z ∈ K1(C) = C∗. A deep theorem of Borel [136,1974,Ann. Sci. École Norm. Sup. (4)]
computes the torsion free part of K∗(E) where E is a number field. Elements in the torsion
free part of K∗(E) are known as Borel classes as are their images in K3(C). The torsion
summand Q/Z can be described in many ways. For example, in [Jones & Westbury, ibid.] it
is shown that the torsion elements can be constructed as [M, ρ] where M is a Seifert fibered
homology 3-sphere and ρ : π1(M)→ SL(2,C) is a (possibly non-faithful) representation and
[M, ρ] is constructed by the above procedure.

There are various conjectures concerning the algebraic K-theory of fields described in
[1020,Suslin,1987]. The strongest of these, applied to the group K3(C) is that the products
from K1, the Borel classes, and the torsion generate K3(C).

This line of thought suggests two other natural questions.
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(A) Does every element of K3(C)/Torsion arise as [M,α] where M is a closed hyperbolic
3-manifold? Note that the volume term in r[M,α] shows that [M,α] has infinite order.
If not, is it possible to characterize the subgroup of K3(C) which can be constructed
in this way?

(B) Are the known values of the Chern–Simons invariant and the volume of closed hyperbolic
3-manifolds consistent with the conjecture that K3(C) is generated by the products
from K1(C), the torsion summand Q/Z, and the Borel classes?

The papers [925,Reznikov,1995b] and [924,Reznikov,1995a,Ann. of Math.] contain very
interesting related results.

Problem 3.64 (A) Conjecture (Neumann & Reid): If M3 = H3/Γ is a knot comple-
ment, then the commensurator of Γ, com(Γ), is equal to the normalizer of Γ, norm(Γ),
except in the cases of the figure-8 knot and the two Aitchison–Rubinstein knots.

Remarks: A non-arithmetic subgroup has among its commensurable subgroups a
maximal one called the commensurator. A non-arithmetic hyperbolic 3-manifold,
M3 = H3/Γ, is a branched cover of a minimal orbifold which corresponds toH3/com(Γ).
The figure-8 knot is the only arithmetic knot complement [921,Reid,1991,J. London
Math. Soc.].

The two Aitchison–Rubinstein knots [13,1992] are obtained by identifying (in two ways)
the faces of the ideal dodecahedron so as to get a knot complement.

The symmetry group of a hyperbolic knot equals the isometry group of H3/Γ which
equals norm(Γ)/Γ.

Evidence for this conjecture can be found in [838,Neumann & Reid,1992a].

(B) Is there a knot other than one of the above three whose complement is hyperbolic with
cusp parameter in Q(

√
−1) or Q(

√
−3)?

(C) Are there knots other than the two dodecahedral knots for which the cusp field (field
generated by the cusp parameter) is a proper subfield of the trace field?

Problem 3.65 (Mess) In each of the geometries Nil, Solv, and S̃L(2,R), answer the fol-
lowing questions for a 3-manifold modeled on the geometry:

(A) Are closed geodesics unique in their homotopy classes?

(B) Are shortest geodesics unique in their homotopy classes?
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(C) Describe the different knots formed by simple closed geodesics in compact manifolds
modeled on these spaces. In particular, under what circumstances does the complement
in the universal cover of the preimage of a simple closed geodesic have free fundamental
group?

Remarks: In (A) and (B) uniqueness means up to an isometry in the identity component
of the isometry group. Of course, yes to (A) implies yes to (B).

Problem 3.66 (Freedman, Luo & Hass) Conjecture: Let M3 be irreducible and non-
compact, with ∂M = ∅, and with a homogeneously regular, complete Riemannian metric.
Then an essential, proper imbedded plane is proper homotopic to a least area imbedded plane,
where least area means that any Jordan curve in the plane bounds a least area disk which
also lies in the plane.

Remarks: Because of irreducibility, one does not have bubbling off. Without irreducibility,
one could conjecture: if there exists an essential, proper imbedded plane, then there exists
an essential least area plane.

Homogeneous regularity [803,Morrey Jr.,1966] is a condition which is essentially the same
as having upper and lower bounds on the curvature and injectivity radius. Such a bound
always holds in manifolds which cover compact manifolds. The standard method to get
existence theorems for a plane is to take a limit of disks, which exist given Morrey’s condition.
The paper [460,Hass & Scott,1988,Trans. Amer. Math. Soc.] contains an example showing
that Morrey’s condition is necessary sometimes. A complete metric is put on R3 in which
the unit circle in the xy-plane bounds no least area disk. Presumably this example can be
modified to give a counterexample to the conjecture without the homogeneous regularity
condition.

Problem 3.67 (Hass) (A) Let f : F → M3 be a one-sided proper map of a surface into
a Riemannian 3-manifold which induces an isomorphism on π1; also assume f(F ) has
least area among all such surfaces.

Conjecture: f is an imbedding.

Remarks: The assumptions imply that M is homotopy equivalent to a non-trivial
I-bundle over a surface, or to RP3.

The corresponding result for two-sided maps is known [332,Freedman, Hass, & Scott,
1983,Invent. Math.] and [744,Meeks, III & Yau,1982,Topology], [743,Meeks, III &
Yau,1980,Ann. of Math.].
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Note that an affirmative answer to (A) confirms Problem 3.1 E since an irreducible
3-manifold containing an imbedded one-sided RP2 is RP3, and implies Problem 3.4
since an imbedded incompressible annulus from one RP2 to the other would imply that
the h-cobordism is standard.

(B) Let f : F → M be a one-sided, least area (in its homotopy class), π1-injective proper
map which is homotopic to an imbedding.

Conjecture: f is an imbedding.

Remarks: By results in [458,Hass & Rubinstein,1986,Michigan Math. J.], an affir-
mative answer to conjecture (A) implies the same for (B).

(C) A simple special case of this is a conjecture of Meeks: Let M3 be S1×B2 with a metric
in which the boundary is convex, and let K be a (2, 1)-torus knot in S1 × S1. Let F
be a least area Möbius band bounded by K.

Conjecture: F is imbedded.

Remarks: Here one is minimizing area among all mappings of Möbius bands with a
given boundary. It is known from an easy extension of [973,Schoen & Yau,1979,Ann.
of Math.] to the non-orientable case, that a least area Möbius band does exist and
that it is immersed. It is also known that there is a least area Möbius band in the class
of imbedded Möbius bands [742,Meeks, III, Simon, & Yau,1982,Ann. of Math.]. The
problem thus asks if they are always the same.

Problem 3.68 (Hass) (A) Find a smooth flow on surfaces in Riemannian manifolds that

• keeps imbedded surfaces imbedded, and

• takes an incompressible surface to a minimal surface.

Remarks: The mean curvature flow, which works for curves on a surface [409,Grayson,
1989,Ann. of Math.] doesn’t work.

(B) Find a flow on the space of metrics on a closed 3-manifold M that converges to a
constant curvature metric if M is irreducible and atoroidal.

Remarks: This would prove the Geometrization Conjecture (Problem 3.45).

(C) Find a smooth flow on hyperbolic manifolds that takes a diffeomorphism that is homo-
topic to the identity, through diffeomorphisms, to the identity.

Remarks: It is known that homotopic diffeomorphisms are isotopic for geometric
3-manifolds other than hyperbolic ones. See the list of references in Problem 3.95.
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Problem 3.69 (Harnack) What is the maximal number N of components of a non-singular,
real algebraic surface in RP3 of degree m?

Remarks: The first open case is m = 5 when 22 ≤ N ≤ 25 [520,Itenberg & Kharlamov,
1993].

The known upper bound for the number N(m) is

N(m) ≤ m(5m2 − 18m + 25)/12

(this inequality is not sharp for m = 4); it comes from combining the Harnack–Smith
inequality (for the total Betti number of the real surface) and the Petrovskii inequality
(for its Euler characteristic).

The known lower bound for even m is

N(m) ≥ (m3 − 2m2 + 4)/4

and for m ≡ 2 (mod 4)

N(m) ≥ (7m3 − 24m2 + 32m)/24

(the latter case can be realized by an M-surface) [1078,Viro,1979b,Soviet Math. Dokl.].

Problem 3.70 (G. Martin) Given a Kleinian group Γ and a triangle subgroup ∆ with an
invariant hemisphere Π in H3, is it true that for all g ∈ Γ either g(Π) = Π or g(Π̄)∩ Π̄ = ∅
(i.e. the 2-orbifold Π/∆ is imbedded in H3/Γ)?

Remarks: This is true for the triangle groups (2, 3, p), (2, 4, p), and (2, 5, p), all for p ≥ 7
[698,Martin,1995].

Problem 3.71 (G. Martin) (A) Let G be a discrete subgroup of Homeo(Sn) and sup-
pose that G is a convergence group. When is G conjugate to a subgroup which acts
conformally on Sn?

Remarks: Recall that G is a convergence group if given a sequence {gi} ⊂ G, there
exist two points x, y (possibly x = y) and a subsequence {gik} such that {gik} converges
locally uniformly to the constant map x in Sn−y and {g−1

ik
} converges locally uniformly

to y in Sn − x. This definition is equivalent to G acting properly discontinuously on
Sn×Sn×Sn− {big diagonal}. If G is a Mobius or quasiconformal group, or if G acts
properly discontinuously in Sn − {Cantor set}, then G is a convergence group.
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If Γ is a conformal subgroup of Homeo(Sn) and f : Sn → Sn is a continuous map such
that fG = Γf , then G is a convergence group; such an f is a semi-conjugacy, and (A)
ask for a conjugacy, i.e. for f to be a homeomorphism.

An excellent general reference for this problem is [697,Martin,1988,Rev. Mat. Iberoamer-
icana.].

When n = 1, every discrete convergence group G extends as a convergence group to B2

([358,Gabai,1992,Ann. of Math.] and [190,Casson & Jungreis,1994,Invent. Math.])
and thus is topologically conjugate to a Fuchsian (i.e. conformal) group [700,Martin
& Tukia,1988].

When n = 2, not every discrete convergence group G is topologically conjugate to a
Kleinian (i.e. conformal) group. However:

(B) Conjecture: if G is a discrete convergence group of S2 and for each x ∈ S2, stabG(x)
is a finite extension of {1}, Z, or Z⊕Z, then G is topologically conjugate to a Kleinian
group.

Remarks: The conjecture is true if the limit set of G consists of points and topological
circles [699,Martin & Skora,1989,Amer. J. Math.] (for a slight generalization, see
[Martin & Tukia, ibid.]). Note that the stabilizer of a point in a Kleinian group has to
be an extension as above, and (B) conjectures that the converse is true.

(C) Conjecture: if G is a discrete convergence group of S2, then there exists a Kleinian
group Γ isomorphic (via ι) to G and a Γ-equivariant upper semicontinuous cellular
decomposition f of S2 such that the following diagram commutes:

Γ× S2
- S2

G× S2

ι

?

f

- S2
?

f

Remarks: This is true in the same cases as conjecture (B). (C) is motivated by the
fact that such decompositions provide examples of discrete convergence groups which
are not conjugate to Kleinian groups (although they may still be isomorphic), and (C)
conjectures that this is the only way such examples arise.

(D) Conjecture: If G is a convergence group of S2 with (S2×S2×S2− {big diagonal})/G
compact, then G is topologically conjugate to a Kleinian group.
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Remarks: Gabai [358,1992,Ann. of Math.] and Casson & Jungreis [190,1994,Invent.
Math.] prove this for S1 instead of S2. If M3 is a negatively curved closed 3-manifold,
then π1(M) acts as a convergence group on the 2-sphere at infinity with the compact-
ness property above, so if (D) is true then π1(M) is isomorphic to a Kleinian group
(which implies M is hyperbolic if a suitable geometric condition holds [360,Gabai,
1994b,Bull. Amer. Math. Soc.]).

(E) Suppose that G is a convergence group acting on S3, that the limit set L(G) of G is a
Cantor set in S3, that (S3 − L(G))/G is compact, and that G is torsion free (which
implies that G is free). Then, does G extend to B4 as a convergence group?

Remarks: The answer is yes iff 4-dimensional topological surgery works for all fun-
damental groups [331,Freedman,1986,Topology Appl.] (see Problems 4.6 and 5.9).

Problem 3.72 (Gromov) Suppose that G is a convergence group acting cocompactly on
the space of distinct triples of X. Is G necessarily a word hyperbolic group with boundary
X?

Remarks: Of course, the special case of X = Sn is covered in Problem 3.71, where it is
asked whether G is a subgroup of the isometries of hyperbolic (n+ 1)-space.

A word hyperbolic group G is defined as follows: choose a finite set of generators and
form the Cayley graph Γ; put the word metric on Γ (the distance between two vertices is the
minimal number of edges joining them); then G is word hyperbolic if there exists a universal
constant K such that for any geodesic triangle, each edge is within a K-neighborhood of the
other two edges (this turns out to be independent of the choice of generators). The boundary
of G is then defined to be the equivalence classes of geodesics from a fixed point to infinity,
where two geodesics are equivalent if they are a bounded distance apart.

Problem 3.73 (Mess) Is there any example in any dimension of a finitely generated, in-
finite, torsion group acting effectively on a compact manifold? Or of an action of such a
group on a noncompact manifold which fails to be properly discontinuous?

Remarks: Certainly a finitely generated, infinite, torsion group can act as a group of
deck transformations on a noncompact manifold. Also, Olshanskii has shown that a finitely
generated, infinite torsion group can act effectively on a finite dimensional complex (2-
dimensional in his first examples). This was generalized by Gromov. A complete proof of a
stronger result is given in [857,Ol’shanskii,1992,Math. USSR.-Sb].

It is not clear that an answer in the PL (respectively smooth) category yields an answer in
the smooth (respectively PL) category. It seems natural to consider the PL version, for there
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one can consider the dynamics of the action of the group on the space of all triangulations
of the space, as well as the action on the space itself. Special case: suppose f is simplicial
in a triangulation K1 of a compact PL manifold |K1| and g is simplicial in a subdivision
K2 of the triangulation K1. Then f and g are certainly of finite order, and the question is
whether f and g can generate an infinite torsion group. The question can also be asked for
a compact polyhedron.

The answer is negative in dimension 1. The answer for the 2-sphere is not clear. By
application of Hurwitz’s 84(g − 1) theorem, a torsion group acting on a compact connected
2-manifold of negative Euler characteristic is a finite group. (The application of Hurwitz’s
theorem is indirect if the manifold is nonorientable. If the manifold has boundary, then
the negative answer in dimension 1 implies that a torsion group is finite.) A torsion group
which acts on the 2-torus has a subgroup of index at most 12 which acts freely, since the
extended mapping class group has no finite subgroups of order greater than 12 and a finite
order homeomorphism of the torus which is isotopic to the identity acts freely.

Suppose an infinite torsion group acts on the 2-sphere, preserving orientation, and all
point stabilizers are of finite order. Then all point stabilizers are isomorphic to finite cyclic
groups of rotations. By an inverse limit of blowing up processes, one can obtain a new action
of the same group, which setwise preserves a Sierpinski curve, and for which the stabilizer
of any closed complementary domain is conjugate to a group of rotations of the disc. The
same holds for a group of piecewise linear homeomorphisms of the 2-sphere, but it is not
clear that the pointwise stabilizers of a torsion group of homeomorphisms of the 2-sphere
are necessarily abelian.

This question is related to Problem 3.39: Suppose M admits no S1 action. Is it possible
for PL(M) to contain an infinite torsion subgroup? Assuming that PL(M) doesn’t contain
an infinite finitely generated torsion subgroup, any infinite torsion subgroup is a direct limit
of finite groups. It is then an exercise in the equivariant sphere theorem and the Smith
conjecture to deduce that M has finite fundamental group, and is prime or else M is prime,
aspherical, atoroidal, but not hyperbolizable, and that there are regular coverings M →
Ni of arbitrarily large degree; this last assertion depends on the Orbifold Geometrization
Conjecture (Problem 3.46). Furthermore, homological group theory gives severe restrictions
on the possibilities for the deck groups of these coverings.

Problem 3.74 (Mess) Let M3 be compact, closed, and aspherical. Suppose π1(M) is not
word hyperbolic. Then show that Z⊕ Z occurs as a subgroup of π1(M).

Remarks: In [415,Gromov,1987], Gromov shows that if π1(M) is not word hyperbolic then
there is a conformal map of the complex plane to the universal cover of M which is area
minimizing on every disc in the complex plane. Thus the canonical approach to this problem
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is to show that if there is such a minimal surface then there is also a minimal surface which
covers a torus and is stabilized by a rank two free abelian subgroup of the fundamental
group π1M . A partial result is that a single area minimizing surface can be improved to a
lamination [812,Mosher & Oertel,1995].

Problem 3.75 (Waldhausen) If a closed M3 is irreducible with infinite π1(M), does π1(M)
contain a surface group?

Remarks: If not, then all infinite index, finitely generated, subgroups of π1(M) are free.
Apparently there is no reference for this fact although some experts (e.g. Jaco and Scott)
knew it in the 1970’s. Here is a sketch (Scott):

First note that if M contains a P 2, then π1(M) contains a surface group namely Z/2Z.
From now on, assume that M is P 2-irreducible so that M is aspherical. Suppose that there
is a non-free subgroup H which is finitely generated and has infinite index. Then H has
an indecomposable free factor, K, which is not Z. Now in the cover MK corresponding to
K there is a core whose boundary is π1-injective in MK . This boundary cannot be empty
because the cover corresponding to K is non-compact, as K is of infinite index in π1(M).
As M is aspherical, so is MK . Hence any S2 component of the boundary of the core must
bound a fake ball which we can add to the core. By repeating this addition, we construct a
core of MK , whose boundary has no S2 components. Any component of this boundary must
be a π1-injective surface, as required.

Problem 3.76 (Hass) Determine which finitely generated, 3-manifold groups are LERF.
In particular, is the figure-8 knot group LERF? What about hyperbolic 3-manifold groups?

Remarks: G is LERF (locally extended residually finite) if for any finitely generated sub-
group S ⊂ G and any element g ∈ G− S, there exists a finite index subgroup H such that
H contains S but not g. All surface groups are LERF and all Seifert fibered 3-manifold
groups are LERF ([977,Scott,1978,J. London Math. Soc.] and correction [982,Scott,1985b,
J. London Math. Soc.]), but many graph manifold groups are not ([165,Burns, Karrass, &
Solitar,1987,Bull. Austral. Math. Soc.] and [675,Long & Niblo,1991,Math. Zeit.]).

Nothing has been proved about closed or finite volume hyperbolic 3-manifold groups; it is
possible that all are LERF, or that none are. This problem is closely related to the question
(Problem 3.52) of the tameness of the ends of hyperbolic 3-manifolds (see [981,Scott,1985a,
Topology] for a discussion of this).

If the fundamental group of M has a surface subgroup and is LERF, then the surface
imbeds in a finite cover, and thus M is virtually Haken. Furthermore, there is a finite cover
of M which has infinite first homology.
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Problem 3.77 (Scott) A Poincaré duality groupG of dimension n (PDn-group) is a finitely
presented group whose homology and cohomology satisfy Poincaré duality over Z[G] with a
fundamental class in dimension n. The only known PDn-groups are fundamental groups of
closed aspherical n-manifolds, and every PD2-group is the fundamental group of a closed as-
pherical surface ([268,Eckmann & Muller,1980,Comment. Math. Helv.] and [267,Eckmann
& Linnell,1983,Comment. Math. Helv.]). (See Problem 5.29.)

(A) Is every PD3-group G the fundamental group of a closed, aspherical 3-manifold?

Remarks: If G is a PD3-group with non-trivial center and if H1(G) is infinite, then
G is the fundamental group of an aspherical Seifert fibered space [484,Hillman,1985,
Math. Zeit.]. The answer is also yes if G is solvable or has a finitely presented normal
subgroup of infinite index [1047,Thomas,1984,Math. Zeit.]. Thomas [1048,1995] has
just published a survey on (A).

(B) Conjecture: If G has non-trivial center, then G is the fundamental group of an as-
pherical Seifert fibered space.

(B) is a special case of (A), and is motivated by the theorem that if a closed 3-manifold
has fundamental group with center Z, then it is a Seifert fibered space (see the Update
to Problem 3.5).

(C) Conjecture: There does not exist a finitely presented, infinite, torsion group.

Remarks: This conjecture would be useful in some approaches to (B). This is because,
in (B), the quotient of G by the central Z must be finitely presented and infinite. Mess
showed that if G is a 3-manifold group, then this quotient cannot be torsion (see
Problem 3.73).

Problem 3.78 (Cochran & Freedman) Given a group G, recall that the lower central
series . . . Gn−1 ⊃ Gn ⊃ Gn+1 . . . is defined inductively by G1 = G and Gn = [G,Gn−1].
(Note that if G = π1(X), then an element of Gn is a product of elements represented by
maps of an nth-order, half-grope intoX, where the boundary loop of the grope lies inGn (see
[330,Freedman,1984])). For the first countable ordinal ω, we can define g ∈ Gω if g ∈ Gn

for all n. Then Gω+1 = [G,Gω], and so on, defining Gα for all ordinals α. (Note that
g ∈ Gω = (π1(X))ω does not mean that g corresponds to an infinite half-grope.) Finally,
|G| is some cardinal, so there exists an ordinal α (with cardinality no more than than |G|)
for which Gα = Gα+1 = . . . and the lower central series is constant after α. Let the smallest
such α be called the length of G.

(A) Find a closed 3-manifold group G such that F/Fk ∼= G/Gk for all k ∈ Z+ and F some
free group, with the property that the length of G is not ω.
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Remarks: Given such aG, then G/Gω is a finitely generated, parafree group satisfying
H2(G/Gω) 6= 0, which would provide a counterexample to Baumslag’s Parafree Con-
jecture: a finitely generated, parafree group satisfies H2(G;Z) = 0 [73,Baumslag,1967,
Trans. Amer. Math. Soc.], [74,Baumslag,1969,Trans. Amer. Math. Soc.] (parafree is
defined in the Problem 3.79).

(B) For what ordinals α does there exist a compact 3-manifold M for which π1(M) has length
α? More generally, what are the restrictions on the lower central sequence {G/Gα} of
a closed 3-manifold group.

Remarks: First note that any countable ordinal is the length of some finitely generated
group [431,Hall & Hartley,1966,Proc. London Math. Soc.], but it is not known which
are the lengths of finitely presented groups, let alone compact 3-manifold groups.

Second, [648,Levine,1995] contains the first examples of finitely presented groups with
length larger than ω.

Third, there are closed, oriented 3-manifolds whose groups have length at least 2ω (i.e.
Gω+k+1 6= Gω+k for any non-negative integer k). These 3-manifolds can be taken to be
the connected sum of a lens space and integral surgery on the Borromean rings or the
Whitehead link (their actual length is not yet known) [217,Cochran & Orr,1995].

Furthermore, given a close, oriented, connected 3-manifold M with fundamental group
G, there is a hyperbolic 3-manifoldM ′ with groupG′ and a degree one map f : M ′ →M
which induces an isomorphism on H1 (and hence induces isomorphisms fα : G′/(G′)α ∼=
G/Gα for each ordinal α). As a consequence, G and G′ have the same length [ibid.] .

(C) Is the length of a 3-manifold group invariant under homology bordism?

Remarks: A yes answer would make an example for (A) very difficult to find, and
would offer strong support for the Parafree Conjecture.

(D) Is the property, length bigger than ω, generic in some sense for closed 3-manifold
groups, or is it rare?

Problem 3.79 (Freedman) Call a groupG almost parafree if there exists a homomorphism
ϕ : F → G, F a finitely generated free group, which induces isomorphisms

ϕn : F/Fn
∼=→ G/Gn

for all integers n > 0. (Recall that these isomorphisms are implied by ϕ2 = isomorphism
and ϕ∗ : H2(F )→ H2(G) is an epimorphism (in the case above, H2(F ) = 0 so H2(G) = 0 is
necessary) [1009,Stallings,1965,J. Algebra] and [212,Cochran,1985,Math. Proc. Cambridge
Philos. Soc.] for a topological proof.) An almost parafree group is called parafree if in
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addition ∩nGn = e [73,Baumslag,1967,Trans. Amer. Math. Soc.], [74,Baumslag,1969,
Trans. Amer. Math. Soc.].

A stronger condition, E, which implies almost parafree is that there is an epimorphism
e : G � F which induces an isomorphism e∗ : H1(G) → H1(F ). There exists a closed
3-manifold M whose π1(M) is almost parafree but does not satisfy the stronger condition
E, for example, 0-surgery on any ribbon link which is not a homology boundary link [483,
Hillman,1981].

Question: Given any closed 3-manifold M with π1(M) almost parafree, is M homology
bordant to a 3-manifold N whose π1(N) (which is necessarily almost parafree) satisfies the
stronger condition E?

Remarks: This is in analogy with a link L in S3 and its fundamental group π1(S3 − L).
The µ̄ invariants of L are all zero iff π1(S3−L) is almost parafree; L is a homology boundary
link iff the stronger condition E holds (that is, there is an epimorphism e : π1(S3 − L)� F
inducing an isomorphism on H1); (L is a boundary link iff in addition e takes meridians to
generators). Homology boundary links have all µ̄ = 0, but the converse is not true [Hillman,
ibid.]. There also exist links with µ̄ = 0 which are not homology boundary links or ribbon
links (fusions of boundary links) [213,Cochran,1987,Invent. Math.].

Therefore the above open question is very closely related to the question, is every link
in S3 with µ̄ = 0 concordant to a homology boundary link?. There exist links L with µ̄ = 0
which are not concordant to any boundary link [216,Cochran & Orr,1993,Ann. of Math.].

Problem 3.80 (Hass) Find an algorithm to determine if a 3-manifold M3 is simply con-
nected.

Remarks: Rubinstein has outlined an algorithm (see [1049,Thompson,1994,Math. Res.
Lett.] for a moderately different version) to determine if M is S3, but it does not detect
homotopy 3-spheres which are not S3.

Problem 3.81 (Rubinstein) Given a loop γ in a compact 3-manifold M , is there an al-
gorithm to decide whether γ is contractible?

Remarks: There is an algorithm whenM is Haken [1089,Waldhausen,1968c,Ann. of Math.]
which works for 3-manifolds with finite covers which are Haken; therefore there is an algo-
rithm for Seifert fibered spaces. The problem is equivalent to finding an algorithm for
building the universal cover of M by putting fundamental polyhedra together.
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An algorithm could be found if the Geometrization Conjecture holds, or if π1(M) is
residually finite. The problem may be easier if M has an immersed, incompressible surface
(for some special cases, see [1003,Skinner,1994,Topology]).

Problem 3.82 (Rubinstein) Given two compact 3-manifolds, M1 and M2, find an algo-
rithm to decide whether they are homeomorphic.

Remarks: An algorithm exists for Haken manifolds [428,Haken,1961,Acta Math.], [429,
Haken,1962,Math. Zeit.], modulo work of Hemion [470,1979,Acta Math.] solving the con-
jugacy problem for the mapping class group; an improved version can be found in [536,Jaco
& Oertel,1984,Topology]. An algorithm also exists when the Heegaard genus of M1 is ≤ 2
[951,Rubinstein,1995].

Problem 3.83 (Rubinstein) Is there an algorithm to decide whether a 3-manifold M has
a 2-sided, immersed, incompressible surface?

Problem 3.84 (A) Formulate an integer valued notion of complexity of a closed 3-manifold,
say C(M3). It should have the property that there are only finitely many 3-manifolds
F (N) with complexity less than any given integer N . The number of tetrahedra in a
minimal combinatorial triangulation of M3 is an example.

Let S be a collection of closed 3-manifolds; we say that S is almost all 3-manifolds if
limN→∞

[S∩N ]
F (N)

= 1 where by definition [S ∩N ] is the number of 3-manifolds in S of complex-

ity less than N . Define equivalence of two notions of complexity, C and C ′, to mean that S
is almost all for C iff S is almost all for C ′.

(B) What other notions of complexity are equivalent to the example in (A)?

(C) Let H be the set of Haken 3-manifolds. In the universe of irreducible 3-manifolds, is H
almost all 3-manifolds? If not, what is the limit limN→∞

[H∩N ]
F (N)

?

Problem 3.85 (Boileau) Conjecture: A closed, orientable 3-manifold M3 has a unique
unstabilized Heegaard splitting if it is modeled on one of the four geometries,

(1) S3

(2) E3

(3) S2 ×R

(4) Nil.
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Remarks: This conjecture is true for S3 and S2 × S1 [1087,Waldhausen,1968a,Topology],
for lens spaces [131,Bonahon & Otal,1983,Ann. Sci. École Norm. Sup. (4)], for T 3 [120,
Boileau & Otal,1990,J. Differential Geom.], and for Seifert fibered 3-manifolds with three
exceptional fibers and whose base is spherical or Euclidean [121,Boileau & Otal,1991,Invent.
Math.], [122,Boileau & Otal,1994]. Thus the conjecture is known for the geometries S3, E3,
and S2 ×R, except for two Euclidean manifolds containing an incompressible Klein bottle.

A positive answer to the conjecture would prove that a closed, minimal (mean curvature
zero) surface with a given genus in a 3-manifold with Ricci curvature ≥ 0 is unique up to
isotopy. This follows because Ricci curvature ≥ 0 implies that M3 has one of the geometries
S3, E3 or S2 × R [436,Hamilton,1986,J. Differential Geom.] and because a closed, minimal
surface is a Heegaard splitting surface of genus > 1 (or a flat T 2 in T 3).

Definitions: Suppose S is a Heegaard surface, splitting M into two compression bodies,
H and H ′. If essential disks D and D′ can be found in H and H ′ respectively, then,

(a) the splitting is reducible if ∂D = ∂D′,

(b) the splitting is stabilized if ∂D and ∂D′ intersect in exactly one point, (and is unstabi-
lized if no such D and D′ exist),

(c) the splitting is weakly reducible if ∂D ∩ ∂D′ = ∅, and

(d) the splitting is strongly irreducible if there are no D and D′ satisfying (a) or (b) or (c).

Note that (a) implies (c), just by pushing one boundary off the other. Also, (b) implies
(a) unless M = S3 and S is the genus one splitting. If M is irreducible, then (a) implies (b)
[1087,Waldhausen,1968a,Topology]. And if M is reducible (is a connected sum), then any
Heegaard splitting is reducible [430,Haken,1968].

Problem 3.86 What can be said about Heegaard splittings of closed, orientable 3-manifolds
M3 with one of the other four geometries,

(1) H2 × R

(2) P̃SL(2,R)

(3) Solv

(4) H3.
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Remarks: In (1) uniqueness holds for S1 × F 2
g , g > 1, [974,Schultens,1993,Proc. London

Math. Soc.]. 3-Manifolds in (1)–(3) are all Seifert fibered spaces, and their irreducible
Heegaard splittings are either horizontal or vertical [797,Moriah & Schultens,1995], [975,
Schultens,1995].

There are examples with non-unique splittings of the same genus [92,Birman, Gonzalez-
Acuña, & Montesinos,1976,Michigan Math. J.], [795,Moriah,1988,Invent. Math.], [115,
Boileau, Collins, & Zieschang,1986,C.R. Acad. Sci. Paris Sér. I Math.] and [686,Lustig &
Moriah,1991,Topology]. In (4) there exist non-unique examples [781,Montesinos & Whitten,
1986,Pacific J. Math.].

Problem 3.87 (Moriah) Is there a general theory describing Heegaard splittings of arbi-
trary 3-manifolds, as opposed to many special cases?

Remarks: Moriah & Rubinstein proved that Heegaard splittings of bounded genus of man-
ifolds obtained by Dehn surgery on a hyperbolic knot or link are, for large enough surgery,
Heegaard splittings of the knot or link complement (i.e. the Heegaard surface can be moved
off the link). Furthermore, either the link components are cores of the handlebodies, i.e.
the Heegaard splittings are tunnel constructions and can be viewed as vertical, or there is
a simple closed curve on the Heegaard surface which is isotopic to a component of the link,
and therefore can be viewed as horizontal. This is similar to the known Heegaard splittings
of Seifert fibered spaces in general.

Problem 3.88 (Boileau) Does every closed, oriented, irreducible, 3-manifold have a finite
cover which has a unique Heegaard splitting?

Remarks: Schultens [975,1995] has shown that every irreducible splitting of a surface bundle
over S1 with finite monodromy is vertical, but these are not necessarily unique [686,Lustig &
Moriah,1991,Topology]. But such a bundle has a finite cover which is a product, and these
have unique irreducible splittings [974,Schultens,1993,Proc. London Math. Soc.]. Compare
this problem with Problem 3.51.

Problem 3.89 (Moriah) Any two Heegaard splittings of a given 3-manifold M become
equivalent (isotopic) after stabilizing sufficiently many times by connected summing with the
genus one Heegaard splitting of S3. Is there a universal bound N such that two splittings of
M become equivalent when the higher genus splitting is stabilized N times and the other is
stabilized appropriately?



168 CHAPTER 3. 3-MANIFOLDS

Remarks: There is no known example needing more than one stabilization. N = 1 suffices
for the case of 2-bridge knot or link complements and non-simple tunnel number one knot
complements [427,Hagiwara,1994,Kobe J. Math.], for vertical Heegaard splittings of Seifert
fibered spaces [975,Schultens,1995] and (E. Sedgwick), and for the examples of Casson &
Gordon (described in [591,Kobayashi,1988,Osaka J. Math.]), (E. Sedgwick). Rubinstein &
Scharlemann [952,1995] have shown in the non-Haken case that there is a bound which
is linear in the genera of the two splittings. Johannson [544,Johannson,1995] has shown
that there is a polynomial bound in the Haken case, and Rubinstein & Scharlemann give a
quadratic bound.

Problem 3.90 (Johannson) (A) Conjecture: A closed, irreducible, atoroidal 3-manifold
has at most a finite number of Heegaard splittings of a given genus.

(B) For manifolds satisfying (A), does the number of Heegaard splittings of genus g grow
polynomially in g?

Remarks: An atoroidal, Haken manifold has at most a finite number of Heegaard splittings
of a given genus [543,Johannson,1990,Bull. Amer. Math. Soc.], [544,Johannson,1995].

A closed hyperbolic manifold has at most a finite number of genus 2 Heegaard splittings
[456,Hass,1992,Proc. Amer. Math. Soc.].

Problem 3.91 (Gordon) Let Hi be an unstabilized Heegaard splitting of a 3-manifold Mi,
i = 1, 2. Is H1#H2 an unstabilized Heegaard splitting of M1#M2?

Remarks: If Hi is a minimal genus Heegaard splitting of Mi, then H1#H2 is a minimal
genus Heegaard splitting of M1#M2 [430,Haken,1968]. However an unstabilized splitting
may have arbitrarily higher genus than a minimal genus splitting of M [593,Kobayashi,
1992,Osaka J. Math.].

Problem 3.92 (Moriah) Find more examples of minimal genus Heegaard splittings of 3-
manifolds for which the Heegaard genus is greater than the minimal number of generators in
a presentation of π1(M3).

Remarks: Boileau & Zieschang [127,1984,Invent. Math.] found examples of this phenom-
ena among Seifert fibered 3-manifolds over S2 with four exceptional fibers, and proved that
they did not exist for most other Seifert fibered spaces.

Recall that a minimal genus Heegaard splitting means the obvious: no other Heegaard
splitting has smaller genus.
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Problem 3.93 (Moriah) Given any closed, orientable 3-manifold with any metric, show
that the Heegaard surface of any Heegaard splitting is isotopic to a minimal surface.

Remarks: Pitts & Rubinstein proved that a strongly irreducible, Heegaard surface in a
negatively curved 3-manifold is isotopic to either a minimal surface or to the boundary of
an I-bundle over a non-orientable surface with boundary.

Problem 3.94 (Adams) What is the minimal volume for a closed, orientable, hyperbolic
3-manifold M of Heegaard genus g?

Remarks: Using unpublished work of Thurston, there is a universal constant K such that
vol(M) > Kg, so there is a linear lower bound, but no values for K are known (see the proof
of Theorem 2.1 in [7,Adams,1995] for a statement of Thurston’s work). The conjectured (by
J. Weeks) lower bound for the volume of any M is .947 for a genus 2 manifold.

Problem 3.95 If M3 is closed, irreducible and |π1(M)| = ∞, and if f : M → M is a
homeomorphism with f ' id, then is f isotopic to the identity?

Remarks: This does not follow immediately from the Geometrization Conjecture. It is false
for reducible 3-manifolds [343,Friedman & Witt,1986,Topology]. It is true for all geometric
3-manifolds except possibly hyperbolic ones. For hyperbolic 3-manifolds it is true after
passing to a finite sheeted covering [359,Gabai,1994a,J. Amer. Math. Soc.] and is true for
those hyperbolic 3-manifolds having a closed geodesic with a log(3)/2 neighborhood [361,
Gabai,1995a].

An unpublished theorem of Siebenmann is relevant: If f ' id, M is hyperbolic and there
is a geodesic γ such that f(γ) is isotopic to γ, then f is isotopic to the identity. (Sketch
of proof: Assume f(γ) = γ. By Thurston’s geometrization theorem, M − γ is hyperbolic,
so by [813,Mostow,1967,Inst. Hautes Études Sci. Publ. Math.] f |(M − γ) is homotopic
to an isometry g and hence isotopic to that isometry. (The latter statement uses [1088,
Waldhausen,1968b,Ann. of Math.] and the fact that M − γ is the interior of a Haken
manifold.) Since the isometry group of a finite volume hyperbolic manifold is finite, g is
periodic. This g extends to a periodic homeomorphism h of M which is homotopic to f and
fixes γ. The lift of h to B3 fixes S2 (since f ' id), and is periodic, but the only periodic map
with this property is the identity [846,Newman,1931,Quart. J. Math. Oxford Ser. (2)].)

The answer is yes for Haken 3-manifolds [F. Waldhausen, ibid.]; for Seifert fibered 3-
manifolds with infinite fundamental group from [48,Asanao,1978,Yokohama Math. J.], [98,
Birman & Rubinstein,1984,Proc. London Math. Soc.], [949,Rubinstein,1979b,Trans. Amer.
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Math. Soc.] in special cases, and in general from [981,Scott,1985a,Topology] and [119,
Boileau & Otal,1986,C.R. Acad. Sci. Paris Sér. I Math.]; and for lens spaces from [129,
Bonahon,1983b,Topology] and [499,Hodgson & Rubinstein,1985].

Problem 3.96 (Hass) Let f : F → M3 be a 2-sided immersion of a surface such that
f∗ : π1(F )→ π1(M) is not injective.

Simple loop conjecture for 3-manifolds: There exists an essential, simple loop on
F whose image is null homotopic in M .

Remarks: This conjecture arises when trying to surger an immersed surface which is not
π1-injective, and in trying to characterize 3-manifold groups among Poincaré duality groups.

The conjecture is true for M a Seifert fibered space [455,Hass,1987,Proc. Amer. Math.
Soc.]. The conjecture is also true if F is an imbedded surface by the loop theorem, but is
false for 1-sided surfaces, e.g. a torus in RP2 × S1.

Problem 3.97 Let f : S2 → S3 be a topological imbedding. Suppose that for any ε > 0, there
is a continuous function g : S2 → C, where C is either complement, such that |f(x)−g(x)| <
ε for all x ∈ S2. Does it follow that the closure of C is homeomorphic to B3?

Remarks: The question is open in all higher dimensions, but a counterexample in this
dimension should, by suspension, give counterexamples in all higher dimensions. The 2-
dimensional Schoenflies Theorem [775,Moise,1977] gives an affirmative answer in one lower
dimension, even without the hypothesis about g.

Problem 3.98 (Haken) Let f : S2 → M3 be a smooth immersion into an orientable 3-
manifold M . Assume that the double point set in f(S2) is an immersed circle (its preimage
must be two circles) with 2k triple points (there must be an even number). Let N be a
regular neighborhood of f(S2). π1(N) is either trivial or is Z/3Z, and in either case ∂N is
a union of 2-spheres.

Conjecture: N is a punctured S3 or L(3, 1).

Remarks: More generally, if the double point set of f(S2) consists of n immersed circles,
then π1(N) has n generators and each triple point gives a relator of length 3. Every orientable
3-manifold can be punctured enough so that it is then realized as the regular neighborhood
of some immersion f : S2 → M3, or just as an abstract thickening of S2 with various pairs
of immersed circles identified.
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Problem 3.99 (A) Show that a non-orientable, irreducible 3-manifold with π1 = Z/2Z is
RP2 × I.

Remarks: A warm up problem would be to show that for an arbitrary metric on
RP2× I , a least area, one-sided, essential, proper annulus is imbedded. (Note that this
is essentially the old Problem 3.4.)

(B) Show that an irreducible, closed, orientable 3-manifold with π1 = Z/2Z is RP3.

Remarks: Again, to warm up show that for an arbitrary metric on RP3, a least area
RP2 is imbedded. Both (A) and (B) are true if their covers are standard [668,Livesay,
1960,Ann. of Math.], [669,Livesay,1963,Ann. of Math.], and [947,Rubinstein,1976,
Proc. Amer. Math. Soc.].

Problem 3.100 (Y. Rong) Let M3 be closed and orientable.

(A) Are there only finitely many irreducible 3-manifolds N such that there exists a degree
one map M → N?

Remarks: There exists infinitely many if M is non-orientable (Rong). A degree one
map f : M → N is always homotopic to one of the form: there is a Heegaard splitting
H ∪ H ′, H ∩ H ′ = Fg, of N such that f |f−1(H) is a homeomorphism, there exist g
disjoint Seifert surfaces in f−1(H ′) for the g meridians in f−1(Fg), which are mapped
in the obvious way to the 2-disks in H ′, and then the remainder of M is crushed to the
remaining 3-ball in N [937,Rong & Wang,1992,Math. Proc. Cambridge Philos. Soc.].

(B) Does there exist an integer NM such that if

M
deg1
→ M2

deg1
→ M3

deg1
→ . . .

deg1
→ Mk

is a sequence of degree 1 maps with k > NM , then the sequence must contain a homotopy
equivalence?

Remarks: Note that a yes answer to (A) implies a yes answer to (B). If k = ∞
and M is geometric, then after some finite stage all degree one maps are homotopy
equivalences [934,Rong,1992,Trans. Amer. Math. Soc.].

One can also ask these questions when ∂M 6= ∅ and the degree one maps must be
proper. In the knot complement case, there is an obvious relation with parts (C) and
(D) of Problem 1.12.

Problem 3.101 (Rourke) (A) Given two oriented, framed links, L1 and L2, in S3 which
define the same 3-manifold, is it possible to get from L1 to L2 by a sequence of coherent
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K-moves, where a coherent K-move is an ordinary K-move in which all strands passing
through the ±1 unknot are oriented in the same direction?

Remarks: See [300,Fenn & Rourke,1979,Topology] for a definition of a K-move. (A)
is equivalent to the following question about surgery on framed braids.

(B) Given two (oriented), framed, closed braids, L1 and L2, in S3 which define the same
3-manifold, is it possible to get from L1 to L2 using the Markov moves and braided
K-moves, where a braided K-move is a K-move in which the ±1 unknot lies in a plane
transverse to the braid and encircles the leftmost s strands in the braid, 0 ≤ s ≤ n, for
an n-strand braid (of course the ±1 unknot can be oriented and tilted to form part of
the braid).

Remarks: This seems to be the natural question combining surgery on framed links
and braids. A harder question (in that an affirmative answer implies yes to (A) and
(B)) is:

(C) Since any 3-manifold can be obtained by surgery on a pure, framed closed braid, suppose
two such give the same 3-manifold; is it possible to move from one braid to the other
by a sequence of braided K-moves (which preserve pureness) and conjugacy of braids?

Remarks: The two Markov moves (under which two braids are equivalent if their clo-
sures form the same link) can be replaced by one move [638,Lambropoulou & Rourke,
1996].

Ko & Smolinsky [589,1992,Proc. Amer. Math. Soc.] in the circumstances of (B),
show how to get from L1 to L2 by Markov moves, blowing up and down, braid pre-
serving handle slides, and a certain way of reversing the orientation of a ±1 unknotted
component.

Problem 3.102 (Auckly) Define the surgery number, S(M), of a 3-manifold to be the
minimal number of components in a framed link needed to define M . In the same way,
define the Dehn surgery number, SD(M).

(A) Is it true that the connected sum of n non-trivial homology 3-spheres has SD ≥ n?

Remarks: Neither S nor SD is additive, as can be seen by considering surgery on
cabled knots. (A) is true for n = 2 by [404,Gordon & Luecke,1987,Math. Proc.
Cambridge Philos. Soc.].

(B) Find an irreducible, atoroidal, homology 3-sphere, M , with S(M) > 2 or SD(M) > 2,
or even arbitrarily large.

Remarks: There is a hyperbolic M with SD(M) > 1 [54,Auckly,1995]. Probably one
can use lens spaces to find 3-manifolds with S − SD arbitrarily large.
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Problem 3.103 (Hoste) Every open 3-manifold (paracompact) can be obtained by surgery
on a possibly infinite link imbedded in S3 −X where X is a closed subset of a fixed tame
Cantor set in S3 [507,Hoste,1995].

Question: What is the calculus relating the different links that give the same 3-manifold?

Remarks: It is known that it may take infinitely many moves to pass between different
framed links for the same manifold [ibid.], but it may be possible to do a finite number of
sets-of-moves each of which consists of an infinite number of simultaneous moves in different
isolated locations.

Problem 3.104 (Auckly) (A) Is every closed 3-manifold M with a representation ϕ :
π1(M)→ SU(2) given by a framed link L which has a sublink S satisfying the following
two conditions:

1. for any meridian m of S, ϕ(m) = ±I ∈ SU(2).

2. L−S can be divided into sublinks L1 ∪L2 ∪ . . .∪Lk, k ≥ 1, such that each Li lies
in a 3-ball Bi and the {Bi} are pairwise disjoint; then we require that, for each
i ∈ {1, . . . , k}, all meridians of Li are taken by ϕ into some U(1) in SU(2) which
may vary with i.

Remarks: Yes if M is Seifert fibered or a graph manifold or some bundles over S1

[53,Auckly,1994,Math. Proc. Cambridge Philos. Soc.] .

(B) Is every closed 3-manifold M , with a representation ϕ : π1(M) → SU(2), bordant
via W 4 to a connected sum of lens spaces such that ϕ extends over the bordism to
Φ : π1(W )→ SU(2)?

Remarks: Representations ϕ correspond to flat connections A on the trivial SU(2)
bundle over M . An affirmative answer to either (A) or (B) would imply that the
Chern–Simons invariant CS(M,A) is rational [Auckly, ibid.] .

Problem 3.105 (A) Does every compact 3-manifold M3 have a non-trivial representation
π1(M) → SU(2)? If π1(M) is non-abelian when can the representation have non-
abelian image?

Remarks: It is not always true that if π1(M) is non-abelian, then the representation
can be chosen so that its image is not Abelian; if two trefoil knot complements are
glued together so that the meridian of one matches the fiber of the other copy when
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it is thought of as a Seifert fibered 3-manifold (in which case the fiber is lm−6), then
the resulting fundamental group is non-abelian but has only Abelian representations
to SU(2) (Klassen). One can ask for a similar example among homology 3-spheres.

One tool for finding non-trivial representations is to place a homology 3-sphere in a
4-manifold with positive b2+ on both sides and non-trivial Donaldson invariants.

(There are finitely presented, infinite, simple groups with no non-trivial representations
to any matrix group. Higman [480,1951,J. London Math. Soc.] gave the following
example, 〈a, b, c, d|āba = b2, b̄cb = c2, c̄dc = d2, d̄ad = a2〉, which has no subgroups
of finite index, whereas any finitely generated subgroup of a matrix group must have
subgroups of finite index; this group is not simple (although it is clearly perfect (b =
b̄āba etc)), but its quotient by any maximal proper normal subgroup is simple.)

(B) Find an M3 with an isolated representation ρ : π1(M)→ SU(2) for which H1(M ; ad(ρ)) 6=
0. There are examples when π1(M) is replaced by an arbitrary group G, e.g. [679,
Lubotzky & Magid,1985].

Problem 3.106 (Stern) Find an example of a Floer sphere, i.e. find an irreducible homol-
ogy 3-sphere, Σ3, other than S3, with vanishing Floer homology groups.

Problem 3.107 (Braam) The Casson invariant of homology three spheres is defined as
the geometric oriented intersection of two subvarieties of the space of flat connections on
a surface. Can a homology theory be defined such that these subvarieties are cycles in this
theory?

Remarks: Something like this has been done for generalized Casson invariants of knots
([347,Frohman,1993,Topology], [349,Frohman & Nicas,1994,Topology]) but the case of ho-
mology 3-spheres seems to escape known theories.

Problem 3.108 (Garoufalidis) Does there exist a closed 3-manifoldM3 such that Z(M) =
Z(S3) (M might be called a Witten sphere or quantum sphere)?

Remarks: The invariant Z can have several interpretations:

(i) Witten’s definition of Z for SU(N) [1116,1989,Comm. Math. Phys.];

(ii) Z could mean the perturbative Chern–Simons invariants [55,Axelrod & Singer,1992]
and [603,Kontsevich,1994];
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(iii) Z could be the invariants at rth roots of unity of [923,Reshetikhin & Turaev,1991,
Invent. Math.] for sl(2,C) and [1108,Wenzl,1993,Invent. Math.] or [1071,Turaev &
Wenzl,1993,Internat. J. Math.], for other Lie algebras.

It would be interesting to find an M with Z(M) = Z(S3) for just sl(2,C) and all r > 1
in (iii). Such an M would have to be a rational homology sphere (using the formula for τ3
in [582,Kirby & Melvin,1991b,Invent. Math.]), and thus an integral homology sphere with
Casson invariant zero [817,Murakami,1994,Math. Proc. Cambridge Philos. Soc.].

Note that Z for sl(2,C) and all r does not even distinguish lens spaces, for L(65, 8) and
L(65, 18) have the same invariant ([581,Kirby & Melvin,1991a,Abstracts Amer. Math. Soc.]
for prime r, and [1129,Yamada,1995,J. Knot Theory Ramifications] for all r).

Let us consider the Reshetikhin–Turaev invariant Z(M) of (iii) for sl(N,C) and rth roots
of unity. A growth rate conjecture of Witten can be stated as follows:

Conjecture: Z(M) is asymptotic to c(sl(N,C),M)rθsl(N,C)(M) as r→∞, where c(sl(N,C),M)
is a nonzero constant and

θsl(N,C)(M) = maxρ(h
1(M,adρ) − h0(M,adρ))/2

where ρ runs over all generic representations of π1(M) in SU(N) and hi(M,adρ) denotes the
dimension of the ith cohomology of M with coefficients in ρ.

Garoufalidis [366,1995] has shown that ifZ(M) = Z(S3) for all the sl(N,C) Reshetikhin–
Turaev invariants and all r then,

• either the above growth rate conjecture of Witten regarding the asymptotics of Z(M)
fails, or

• there is a closed 3-manifold M whose fundamental group is not residually finite, or

• the Poincaré conjecture in dimension 3 fails.

This Problem is analogous to asking for a Jones knot, that is, a knot with the same Jones
polynomial as the unknot (see Problem 1.88). In this case, Garoufalidis [ibid.] has shown
that

• either there exists a framed knot in S3 all of whose colored sl(N,C) Jones polynomials
do not distinguish it from the unknot or,

• the growth rate conjecture of Witten fails.



176 CHAPTER 3. 3-MANIFOLDS

Problem 3.109 (The Closing Lemma) If V is a Cr vector field on a closed manifold
with a non-trivial recurrent orbit (the orbit is contained in its backward or forward closure,
[866,Palis, Jr. & de Melo,1982a]) is there a Cr-perturbation V0 of V with a closed orbit?

Remarks: This problem originated in [886,Poincaré,1892; page 82]; Poincaré’s application
then was to show that for generic hamiltonian systems, the periodic trajectories are dense in
the compact energy surfaces. Thom gave a half page proof in his 1960 preprint [1045,Thom,
1960; pages 5–6], but Peixoto pointed out an error and the Closing Lemma, as it became
known, turned into one of the most sought after building blocks of the theory of dynamical
systems.

Among the results implied by a positive solution to the Closing Lemma are that generic
dynamical systems have periodic trajectories which are dense in the set of recurrent orbits
(Axiom Ab of [1005,Smale,1967,Bull. Amer. Math. Soc.]), and generic density theorems
(periodic sets are dense in the non-wandering set) for fields and diffeomorphisms in general.

Peixoto [870,1962,Topology] was able to obtain the Cr-generic density theorems, men-
tioned above, for compact orientable surfaces and 1 ≤ r ≤ ∞, circumventing the Closing
Lemma. In 1967, Pugh [905,1967,Amer. J. Math.] proved the C1-version of the Lemma and
in 1983 Pugh & Robinson [906,1983,Ergod. Th. & Dynam. Sys.] extended it to the class
of hamiltonian fields, proving a C1-version of Poincaré’s initial assertion [ibid]. Very little is
known beyond that. For example, it is not known whether:

• all recurrent trajectories of a C2 differential equation can be closed by a C2 perturbation
of the equation;

• for non-orientable surfaces and all higher dimensional manifolds, a generic C2 differ-
ential equation has its periodic trajectories dense in the non-wandering set.

Problem 3.110 (Freedman) Find a compactly supported vector field on R3 which gener-
ates a volume preserving flow ψt : R3 → R3 so that for some closed loop, γ

Whitney norm(ψt(γ)) ≥ c0e
c1t

for some positive constants c0 and c1.

Are such flows generic?

Remarks: If Whitney norm is replaced by length, then it is not hard to find such a flow.
The Whitney norm [1113,Whitney,1957] allows one to minimize using the following idea:
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find a 2-chain of small area whose boundary is two nearly parallel, oppositely oriented, long
strands in ψt(γ) and two short arcs at either end; one then eliminates the length of the two
long strands at the cost of adding the length of the short arcs plus the area of the 2-chain.
The infimum over such constructions is the Whitney norm of ψt(γ).

Problem 3.111 (G. Kuperberg) Conjecture: Every closed, orientable m-manifold Mm

with zero Euler characteristic has a minimal flow. In particular, S3.

Remarks: A flow is minimal if every orbit is dense in M3. One can impose varying degrees
of differentiability, but the conjecture is even open for the continuous case where one asks for
a topological 1-dimensional foliation with each leaf dense. The n-torus T n has an analytic,
minimal flow. Fathi & Herman [295,1977] have shown that a manifold with a locally free
C∞ S1-action has a minimal C∞ diffeomorphism (a Z-action in which every orbit is dense);
these diffeomorphisms have mapping tori which have minimal flows. They also show that if
M admits a locally free C∞ T 2-action, then M has a minimal C∞ flow.

Problem 3.112 (S. Matsumoto) A minimal set X of a flow φ is called isolated if X
admits a neighborhood U with the following property: if the whole orbit of a point x is
contained in U , then x is a point of X.

Question: Does a smooth flow on a 3-dimensional manifold admit an isolated minimal
set which is not a closed orbit (homeomorphic to S1 or a point)?

Remarks: The answer is not known even for open manifolds (and for compact minimal
sets).

Problem 3.113 (G. Kuperberg) Is there a C2, volume preserving flow on S3 with no
closed orbit? Can it be C∞ or even real analytic?

Remarks: G. Kuperberg has produced such a flow in the C1 case [630,Kuperberg,1995]
which is C0 conjugate to Schweitzer’s C1 flow [976,1974,Ann. of Math.]. K. Kuperberg has
given an example which is analytic, but not volume preserving [632,1994,Ann. of Math.]
(also [631,Kuperberg & Kuperberg,1995].
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Chapter 4

4-Manifolds

• Problems 4.1–4.40 (1977), 4.41–4.68 (1982), 4.71–4.148 (new).

• Existence (given homotopy type), 4.1–4.10, 4.49, 4.69, 4.71–4.72, 4.92–4.98.

• Uniqueness (given homotopy type), 4.11–4.16, 4.42, 4.51, 4.80, 4.83–4.91.

• Surfaces in 4-manifolds, 4.21–4.31, 4.36, 4.41, 4.46, 4.58, 4.73, 4.81, 4.98, 4.105–4.113,
4.127, 4.128, 4.140, and 1.48–1.51, 1.93–1.97, 5.6.

• Complex surfaces, 4.36–4.40, 4.50, 4.78, 4.99–4.107, 4.124, 4.133–4.135.

• Exotic R4’s, S4’s and Casson handles, 4.41–4.43, 4.45, 4.76–4.80, 4.141.

• Smooth handlebodies, 4.16, 4.18, 4.21, 4.28, 4.43, 4.73, 4.88–4.91, 4.98, 4.115, 4.118.

• Structures on topological manifolds, 4.44, 4.71–4.75, 4.82, 4.83.

• Smooth bordisms and splitting 4-manifolds by 3-manifolds, 4.2–4.5, 4.16, 4.32, 4.33,
4.49, 4.74, 4.98, 4.114–4.119.

• Algebraic topology, 4.53, 4.97, 4.105, 4.126.

• Diffeomorphisms, 4.34, 4.35, 4.125–4.126.

• Group actions, 4.55, 4.56, 4.121, 4.123–4.125.

• Bundles, 4.57, 4.122, 4.148, and 2.17, 2.18.

• Fundamental groups, 4.9, 4.10, 4.17, 4.59, 4.60, 4.84, 4.109, 4.119–4.121.
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• Imbedding 4-manifolds, 4.19, 4.20, 4.62, 4.63.

• Donaldson, Seiberg-Witten invariants, 4.128–4.133.

• Symplectic manifolds, 4.64, 4.113, 4.135–4.142.

• Differential geometry, 4.65–4.68, 4.143.

• Arrangements, 4.144–4.147.

Introduction

At the suggestion of Gompf, the adjectives exotic and fake are used as follows: N is called
an exotic version of M when N and M are homeomorphic but not diffeomorphic, but N is
called a fake version of M when N and M are only simple homotopy equivalent but not
homeomorphic. Thus an exotic R4 is an exotic smooth structure on R4, whereas a fake CP2

is a manifold homotopy equivalent but not homeomorphic to CP2.

It is also important to note that in dimension 4, irreducible means that every smoothly
imbedded 3-sphere in a 4-manifold bounds a homotopy 4-ball, which is then homeomorphic
to B4 but is not known to be diffeomorphic to B4.

Perhaps the best known, yet complicated, smooth 4-manifold is what is now called the
K3 surface (it was called the Kummer surface in the old list, but that just refers to one
of many complex structures on K3); this simply connected manifold with intersection form
2E8⊕3(0

1
1
0
) has many descriptions, e.g. any nonsingular quartic in CP3, but the most useful

one is that of an elliptic surface [444,Harer, Kas, & Kirby,1986]. TheK3 surface is naturally
a fiber connected sum of two copies of a smaller 4-manifold calledE(1) (of courseK3 = E(2),
and E(n) is formed by taking the fiber connected sums of n copies of E(1)). E(1) is better
known as the rational elliptic surface or CP2#9(−CP2) (and was called the half-Kummer
surface in the old list).
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Problem 4.1 Existence. What integral, symmetric, unimodular, bilinear forms are the
intersection forms of simply connected, closed 4-manifolds?

Remarks: See [769,Milnor & Husemoller,1973] for the algebraic background and further
references. Odd, indefinite forms are represented by connected sums of copies of CP2 and
−CP2, but little is known otherwise. In particular, is E8 ⊕ 〈1〉 (the odd, definite form of
signature 9), or E8 ⊕ E8 ⊕ n(0

1
1
0
), n ≤ 2, or Γ16 (the other signature 16, even, definite

form) represented by a manifold? By Rohlin’s Theorem [334,Freedman & Kirby,1978] any
closed, smooth, almost parallelizable (implied by simply connected and even) M4 satisfies
σ(M4) ≡ 0 mod 16; this rules out E8 for example.

E8 ⊕ E8 ⊕ 3

(
0 1
1 0

)
∼= Γ16 ⊕ 3

(
0 1
1 0

)

is represented by the complex Kummer surface.

Any such form is represented by a simply connected, smooth, M4 with ∂M4 equal to a
homology 3-sphere; hence, the next problems.

Update: An (even, odd) form is realized by exactly (one, two) simply connected, closed,
topological 4-manifold [329,Freedman,1982,J. Differential Geom.].

In the smooth case, no definite forms are realized other than ±⊕ n〈1〉 (which is realized
by ±#nCP2), [247,Donaldson,1983,J. Differential Geom.] (the same is true even if π1 6= 0,
[250,Donaldson,1987b,J. Differential Geom.]. All odd, indefinite forms are direct sums of
〈1〉 and 〈−1〉 and hence realized. All even, indefinite forms are of the form nE8 ⊕ m(0

1
1
0
),

and by Rohlin’s Theorem, the cases of odd n are not realized, so we can assume that
n = 2k. Connected sums of the K3 surface and S2 × S2 realized the cases when m ≥ 3k.
If k 6= 0 (and we only assume H1(M ;Z) has no 2-torsion), then m ≥ 3 by [248,Donaldson,
1986,J. Differential Geom.] and [250,Donaldson,1987b,J. Differential Geom.] (the 2-torsion
assumption is no longer necessary using Seiberg–Witten theory). Furuta [352,1995] has
claimed that m ≥ 2k for smooth manifolds with no restriction on the fundamental group.
The remaining cases are still open (see Problem 4.103 and Problem 4.117).

Problem 4.2 Which homology 3-spheres (with Rohlin invariant 0) bound contractible (or
acyclic) 4-manifolds?

Remarks: Essentially nothing is known, except for some families of homology 3-spheres
which do bound contractible 4-manifolds, e.g. (Casson and Harer), all Brieskorn spheres
Σ(p, q, r) where (p, q, r) equals (2, 3, 13), or (2, 3, 25), or (p, ps + 1, ps + 2) for p odd, or
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(p, ps − 1, ps − 2) for p odd, or (p, ps − 1, ps + 1) for p even and s odd (and always p > 0,
s > 0); in fact, these bound a 4-manifold with one 0-handle, one 1-handle, and one 2-handle,
except (2, 3, 25) which uses two 1-handles and two 2-handles.

Akbulut’s candidate for a homology 3-sphere which does not bound an acyclic 4-manifold
is Σ(2, 3, 11) which can be obtained by −1-surgery on the knot below (see Figure 4.2.1.

−1

Figure 4.2.1.

The homology 3-sphere Σ(2, 7, 13), which can also be obtained by +1-surgery on the
(2, 7)-torus knot, lies in the Kummer surface, bounding a manifold with form Γ16 on one
side, and the even form 3(0

1
1
0
) on the other. Does it bound an even 4-manifold of rank ≤ 4?

Update: All homology 3-spheres bound contractible, topological 4-manifolds, [329,Freed-
man,1982,J. Differential Geom.]. In the smooth case many don’t, some do, and in most
cases we don’t know. For example, any homology 3-sphere, which is described by a framed
link whose linking form is eliminated as a candidate for a closed, smooth 1-connected 4-
manifold (see Problem 4.1 Update), cannot bound a smooth contractible (or acyclic) 4-
manifold. Akbulut’s example, Σ(2, 3, 11), does not bound a contractible 4-manifold since it
bounds one with intersection form 2E8 ⊕ 2( 0

1
1
0
) [19,Akbulut,1991a,J. Differential Geom.]).

And Σ(2, 7, 13) which bounds the definite form Γ16 cannot bound a 1-connected, smooth,
4-manifold with β2 < 6.

Y. Matsumoto [710,Matsumoto,1982b,J. Fac. Sci. Univ. Tokyo Sect. IA Math.], sug-
gests that the hyperbolic genus of a homology 3-sphere M3 be defined to be the minimal k
such M3 bounds a smooth 4-manifold W 4 with H1(W ;Z) = 0 and intersection form equal
to the direct sum of k copies of (0

1
1
0
)and, if necessary, one E8. Thus this Problem is a special

case of:

Calculate the hyperbolic genus of any homology 3-sphere.
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On the other hand here are some interesting examples which do bound contractible,
smooth, 4-manifolds: Σ(p, ps− 1, ps+ 1) for p even and s odd, and Σ(p, ps± 1, ps± 2) for p
odd and any s [189,Casson & Harer,1981,Pacific J. Math.]; Σ(2, 2s ± 1, 4(2s ± 1) + 2s ∓ 1)
for s odd, and Σ(3, 3s±1, 6(3s±1)+3s±2), and Σ(3, 3s±2, 6(3s±2)+3s±1) [1011,Stern,
1978,Notices Amer. Math. Soc.], and also [27,Akbulut & Kirby,1979,Michigan Math. J.].

Perhaps the most interesting unknown case is the connected sumM#−M where M has
Rohlin invariant one; M#−M bounds (M − intB4) × I , but no known example bounds a
contractible smooth 4-manifold, (see Problems 4.49 and 4.114).

Problem 4.3 (S. Kaplan) Does every homology 3-sphere bound an even, definite 4-manifold?

Remarks: Many of the interesting examples are links of isolated singularities in complex
surfaces, and hence bound negative definite forms [493,Hirzebruch,1966].

Update: Yes, topologically, since they all bound contractible 4-manifolds, [329,Freedman,
1982,J. Differential Geom.]. No, smoothly, in the following sense: take a homology 3-sphere,
such as Σ(2, 3, 7) which smoothly imbeds in the K3 surface with E8⊕ (0

1
1
0
) on one side and

E8 ⊕ 2(0
1

1
0
) on the other. If this homology 3-sphere bounds an even definite 4-manifold X4

with H1(X;Z) having no 2-torsion, then adding one of the two sides (in K3) to X4 (getting
the orientations right) we would have a smooth 4-manifold contradicting [250,Donaldson,
1987b,J. Differential Geom.]. The 2-torsion assumption is no longer necessary using Seiberg–
Witten gauge theory.

Problem 4.4 Find a homology 3-sphere H of Rohlin invariant one such that H#H bounds
a PL acyclic 4-manifold.

Remarks: If such an H exists, manifolds of dimension ≥ 6 are triangulable ([365,Galewski
& Stern,1980,Ann. of Math.] or [718,Matumoto,1976], and R. Edwards’ triple suspension
theorem). In our current state of ignorance the following conjecture is conceivable: H bounds
an acyclic 4-manifold iff H#H does (H not necessarily of Rohlin invariant one).

Update: No progress, but note that in the Remarks dimension ≥ 6 should be replaced
by ≥ 5 for closed manifolds [365,Galewski & Stern,1980,Ann. of Math.] because of the
double suspension theorem [273,Edwards,1975,Notices Amer. Math. Soc.], [176,Cannon,
1979,Ann. of Math.] or [233,Daverman,1986].

Problem 4.5 (Casson) Which rational homology 3-spheres bound rationally acyclic 4-manifolds?
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Remarks: If M3 bounds a rationally acyclic W 4, then the linking form on H1(M ;Z) must
be null concordant (implying |H1(M ;Z)| = square). If H1(W ;Z) is cyclic, then the Casson–
Gordon invariants [186,1978], [188,1986] must be±1 or 0. The question is already interesting
for lens spaces. L(m2, q), m odd, bounds a W 4 if q = km ± 1 with k, m coprime, or if
q = (m± 1)d with d|2m ∓ 1, or if q = (m± 1)d or (2m ∓ 1)(m ± 1)/d with d|m ± 1 and d
odd [ibid.].

Update: Casson & Gordon’s results were reproved and strengthened using gauge theory
in [311,Fintushel & Stern,1987,Topology], and further generalized in [707,Matic,1988,J.
Differential Geom.] and [944,Ruberman,1988,Topology].

A Chern–Simons type obstruction can be found in [312,Fintushel & Stern,1990,J. London
Math. Soc.].

Problem 4.6 (Freedman) (A) Let f : (M,∂M) → X, ∂X) be a degree 1 normal map
from a smooth (or TOP) 4-manifold to a Poincaré space. Suppose f |∂ is a Z[π1(X)]-
equivalence. A surgery obstruction

σ(f) ∈ Γ4(Z[π1(X)]→ Z[π1(X)]) ∼= L4(π1(X))

is defined. If σ(f) = 0, is f normally bordant to a homotopy equivalence rel ∂?

(B) Can (A) be reduced to an equivalent question about link concordance?

Remarks: An affirmative answer to (A) would yield all sought-after closed, smooth (or
TOP) 4-manifolds (compare Problem 4.1).

There are Γ-group surgery problems with vanishing obstructions σ(f) ∈ Γ4(Z[Z] →
Z[e]), which are not normally bordant rel∂ to homotopy equivalences (this follows from [188,
Casson & Gordon,1986], and [179,Cappell & Shaneson,1974,Ann. of Math.]). There are

also problems with no solution and zero obstruction in Γ4(Z[{a, b : aba = bab}]
γ
→ Z[Z])

where γ(a) = γ(b) = 1. Can a similar failure occur for a Wall group problem as in (A)?

Casson has shown ([423,Guillou & Marin,1986c; pages 201–244]) that if certain sequences
of links contain a slice link (see Problem 1.39) then simply connected surgery will work in
dimension 4. Since slicing these links is itself a nonsimply connected surgery problem, there
is hope that a nonsimply connected generalization of Casson’s work would yield a universal
surgery problem (i.e., a problem set up to slice a certain link) whose solution would be
equivalent to the solution of all 4-dimensional Wall group problems with zero obstructions.

Update: Call a fundamental group good (group theorists call them elementary) if it belongs
to the smallest class of groups which contain Z and finite groups and is closed under direct
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limit, subgroups, extensions and quotients. Perhaps the most interesting finitely presented
group which is not good is Z ∗ Z. Also, there are good groups which have exponential
growth, e.g. G = 〈a, t | tat−1 = a2〉 (note that G is an extension of two good groups,

0 → Z
[

1
2

]
→ G → Z → 0 with homomorphisms

(
1
2

)n
→ t−natn and t → 1, a → 0; also,

G is an example of a group of a knotted S2 in S4, but which is not the group of a knot in
S3 [932,Rolfsen,1976; page 345]). (In fact, all finitely generated good groups are virtually
nilpotent or have exponential growth.)

Then the answer to (A) for TOP is yes if π1(X) is good. In fact, surgery works in the
topological category for good groups, [336,Freedman & Quinn,1990]. Freedman & Teichner
[339,1995] have recently shown that surgery works for a larger class of groups, namely the
closure of groups of subexponential growth under the operations of extensions and direct
limits (see Problem 5.9).

(A) fails in the smooth case, even if π1 = 0. Many examples can be constructed along
the lines of the following: Let K be a K3 surface (its intersection form is 2E8⊕3(0

1
1
0
)) and let

M4 be any submanifold with homology sphere boundary whose form is 2E8. Then there is a
degree 1 normal map f : K → M̂ with zero surgery obstruction, where M̂ = M ∪ cone(∂M),
but there is no smooth 4-manifold homotopy equivalent to M̂ by [247,Donaldson,1983,J.
Differential Geom.].

(B) can be reduced in the topological case to a link slice problem called the AB–Slice
Problem, see [330,Freedman,1984]

Problem 4.7 Is there a TOP, closed, almost parallelizable 4-manifold of signature 8?

Remarks: Yes, if one can prove TOP transversality in the missing case when a 4-dimensional
preimage is expected (see [966,Scharlemann,1976b,Invent. Math.]) (does Sullivan’s proof
that TOP manifolds are Lipschitz (dim 6= 4, 5) help here?), or if a Rohlin invariant one
homology 3-sphere bounds an acyclic 4-manifold, perhaps by being TOP imbedded in S4.

Update: Yes, and it is unique if simply connected. The Poincaré homology sphere bounds
the E8 plumbing and also a contractible topological 4-manifold, so the union is the desired
4-manifold [329,Freedman,1982,J. Differential Geom.].

Topological transversality holds in all cases [913,Quinn,1988,Bull. Amer. Math. Soc.]
and [336,Freedman & Quinn,1990; pages 151–160].

Problem 4.8 Does there exist a manifold proper homotopy equivalent (or even homeomor-
phic) to S3 × R but not diffeomorphic?
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Remarks: Casson has shown that either such a manifold exists or another manifold, Q4 '
S2 × S2 − pt, exists having a exotic end (see Problem 1.39).

Update: Every 4-manifold proper homotopy equivalent to S3×R is homeomorphic to it also
[329,Freedman,1982,J. Differential Geom.]. Freedman’s original example [328,1979,Ann. of
Math.] is not diffeomorphic to S3×R because it has a transverse smooth, imbedding of the
Poincaré homology sphere but not S3.

Other examples, diffeomorphically distinct, can be constructed with ends like exotic
R4’s and/or transverse homology 3-spheres with Rohlin invariant 0 or 1. Since exotic R4’s
are not classified yet up to diffeomorphism it is not surprising that smooth structures on
S3 ×R = R4 − 0 are not classified either.

Problem 4.9 (M. Cohen) Does there exist a 4-dimensional h-cobordism with nontrivial
Whitehead torsion?

Update: If the h-cobordism is W 4 with ∂W 4 = M1 ∪M0, then G = π1(W ) = π1(M0) can
be infinite or finite. In the infinite case, it is conjectured and known in many cases that
Wh(G) = 0 (see Problem 3.32). Kwasik & Schultz [635,1992b,Topology] show that any
h-cobordism W has zero torsion if M0 and M1 are geometric 3-manifolds.

Problem 4.10 (Thurston) If a closed, orientable 4-manifold M4 is a K(π, 1), must the
Euler characteristic be ≥ 0?

Remarks: If M4 has nonpositive curvature then it is a K(π, 1) and χ(M) ≥ 0 [198,Chern,
1955,Abh. Math. Sem. Univ. Hamburg]. This argument fails in higher dimensions [371,
Geroch,1976,Proc. Amer. Math. Soc.] The Hopf Conjecture is that sectional curvature ≤ 0
implies that (−1)kχ(M2k) ≥ 0.

Is it possible that (−1)kχ(M2k) ≥ 0 for all M = K(π, 1)?

Update: Still open, but see [235,Davis,1984] and [192,Charney & Davis,1995].

Problem 4.11 Uniqueness. If two closed, simply connected 4-manifolds are homotopy
equivalent, are they homeomorphic? If so, is the homotopy equivalence homotopic to the
homeomorphism?

Remarks: They are h-cobordant; thus they are diffeomorphic after connected sum with
enough S2 × S2’s [1094,Wall,1964b,J. London Math. Soc.]. Without the simply connected
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assumption, simply homotopy equivalence does not even imply a smooth, normal bordism
(Problems 4.13–4.15; also [178,Cappell & Shaneson,1971,Comment. Math. Helv.]).

If the manifolds are not closed, but have homeomorphic boundaries and the homeomor-
phism extends to a homotopy equivalence, then we can ask if the homeomorphism extends
to a homeomorphism of the 4-manifolds (unlikely; see Problem 4.16).

Kodaira has described [595,1963,Ann. of Math.] some possible counterexamples, log-
arithmic transforms of elliptic surfaces. Here is a description for topologists (A. Kas):
Let S

π→ CP1 = S2 be an elliptic surface with an analytic projection of CP1 such that
π−1(point) = torus T 2 except for a finite number of points. For example, we construct the
Kummer surface by first taking the quotient of T 4 = S1 × S1 × S1 × S1 by the involution
which reflects each circle. The involution has 16 fixed points, so the quotient is a manifold
except for 16 singularities equal to the cone on RP3. Replace the cone by the cotangent disk
bundle of S2, whose boundary is RP3 with the right orientation. This is the Kummer sur-
face, and π is constructed from the projection of T 4 on any S1 × S1. A similar construction
using S2 × T 2, and 180◦ rotation on S2, gives the half-Kummer surface, which is known to
be diffeomorphic to CP2#9(−CP2).

The logarithmic transform is essentially S1 cross the construction in Seifert fibered space
theory in which a nonsingular S1 fiber is replaced by a singular fiber of multiplicity m.

Let D be a 2-ball in CP1 so that π−1(D) = S1 × S1 × D. The logarithmic transform
La(m) of S is La(m) = S − π−1(intD) ∪h S1 × S1 × D where a is the center of D and
h : S1 × S1 × ∂D→ ∂(S − π−1(intD)) = S1 × S1 × ∂D is given by

h(θ1, θ2, ϕ) =

 1 0 0
0 0 −1
0 1 m


 θ1

θ2

ϕ

 , θi and ϕ ∈ [0, 2π].

The map π : S − π−1(intD)→ CP1 − intD extends to La(m) by defining π on S1 × S1 ×D
by π(θ1, θ2, rϕ) = r(θ2 +mϕ) where r ∈ [0, 1].

The logarithmic transform of the half-Kummer surface is still a rational surface and
hence is still diffeomorphic to the half-Kummer surface. However, two logarithmic trans-
forms, La(m) followed by Lb(n), (m,n) = 1, is homotopy equivalent but not known to
be diffeomorphic to the half-Kummer surface. Similarly one logarithmic transform of the
Kummer surface is homotopy equivalent, but not known to be diffeomorphic.

Another case is the nonsingular quintic inCP3, which is known to be homotopy equivalent
to 9CP2#44(−CP2) but not necessarily homeomorphic.

It is not hard to construct examples of homotopy equivalent, simply connected, closed
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4-manifolds, and presumably they are diffeomorphic. The point to these examples is that it
is of independent interest to construct the expected diffeomorphism.

Update: If their intersection form is even or the form is odd and the Kirby–Siebenmann
invariants agree, then the homotopy equivalence is homotopic to a homeomorphism; if the
invariants disagree, then the manifolds are not homeomorphic [329,Freedman,1982,J. Dif-
ferential Geom.].

Regarding the examples in the Remarks, let E(n) denote the fiber connected sum of n
copies of the rational surface CP2#9(−CP2). Thus E(2) is the K3 surface (called Kummer
in the old list) and E(1) was called the half-Kummer above.

First it was shown that for E(2) all the log transforms with a single p were smoothly
distinct [345,Friedman & Morgan,1994]; then it was shown that all log transforms of E(2)
for distinct coprime pairs (p, q) were distinct [789,Morgan & O’Grady,1994] and [71,Bauer,
1994,J. Reine Angew. Math.].

The fact that one or two log transforms were always smoothly distinct was shown for
n ≥ 2 by Morgan & Mrowka [788,1993,Internat. Math. Res. Notices, bound within Duke
Math. J.] using [Morgan & O’Grady, ibid.], by Stipsicz & Szabó [1013,1994b,Duke Math.
J.], and later by Lisca (half the cases [663,1994,Math. Ann.] and the other half [664,1995,
Invent. Math.]); the case n = 1 was done by Friedman [344,1995,J. Amer. Math. Soc.].
Later Fintushel & Stern [314,Fintushel & Stern,1994a] completely calculated the Donaldson
polynomials for E(n), n ≥ 2 without using algebraic geometry, and thereby gave another
proof of the classifications.

The quintic does not even decompose smoothly as a connected sum into two pieces with
b+2 positive, let alone into 9CP2#44(−CP2) [251,Donaldson,1990,Topology].

Problem 4.12 (Mandelbaum & Moishezon) Suppose M4
1 and M4

2 are closed, simply
connected, and homotopy equivalent. Is M1#± CP2 homeomorphic to M2#± CP2?

Remarks: The choice of CP2 or −CP2 may be crucial. The right choice gives an odd,
indefinite intersection form so that we have a homotopy equivalence with a connected sum of
copies of ±CP2. Is there a homeomorphism? Mandelbaum & Moishezon [691,1976,Topology]
construct a diffeomorphism, for the case +CP2, for a large class of complex surfaces.

Update: M1 and M2 are homeomorphic if their intersection form is even. When the form is
odd, they are homeomorphic if they have the same Kirby–Siebenmann invariant, but other-
wise M1#N4 is not homeomorphic to M2#N for any N [329,Freedman,1982,J. Differential
Geom.].
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In the smooth case M1#±CP2 may always be diffeomorphic to M2#±CP2, because the
right choice of ±CP2 destroys the Donaldson polynomial and the Seiberg–Witten invariants
which are our only tools for distinguishing homotopy equivalent smooth 4-manifolds. See
Problem 4.103 for more cases where a diffeomorphism exists.

Problem 4.13 (Cappell & Shaneson) There are homotopy RP4’s which are not diffeo-
morphic to RP4 [181,Cappell & Shaneson,1976,Ann. of Math.]. Which of these homotopy
RP4’s are homeomorphic (diffeomorphic), and which are homeomorphic to RP4?

Remarks: One of these homotopy RP4’s has a double cover which is diffeomorphic to S4

[392,Gompf,1991a,Topology]. Find an elegant way to describe this exotic involution on S4.

Update: Up to homeomorphism there are exactly two homotopy RP4’s, namely RP4 and a
non-smooth homotopy RP4 [434,Hambleton, Kreck, & Teichner,1994,Trans. Amer. Math.
Soc.]; thus all the examples of Cappell & Shaneson are homeomorphic to RP4.

It is still not known which, if any, of these exotic RP4’s are diffeomorphic, but one of
them is obtained from RP4 by a generalized Gluck twist as in Problem 4.51 (B), (for a dif-
ferent approach, see [1014,Stolz,1988,Invent. Math.]). The Cappell–Shaneson construction
provides many possibly exotic S4’s, about which little is known beyond [Gompf, ibid.] and
the comprehensive paper [12,Aitchison & Rubinstein,1984]. Fintushel & Stern [308,1981,
Ann. of Math.] gave the first example of an involution on S4 with an exotic RP4 as quotient.
Also see Problem 4.85.

Problem 4.14 (Cappell & Shaneson) (A) There is a homotopy equivalence h : S2 ×
RP2 → S2 × RP2 constructed by

S2 ×RP2 → (S2 × RP2) ∨ S4 id∨α
−→ S2 × RP2

where α generates π4(S2). h is not homotopic to a PL homeomorphism because it
has a nontrivial normal invariant (the induced normal map h−1(RP2) → RP2 has a
nontrivial Kervaire invariant). Is h homotopic to a homeomorphism?

(B) Construct a homotopy S2 × RP2 by removing a normal B3-bundle of RP1 and sewing
in a suitable (T 3 − B3)-bundle over S1. Is the manifold or the homotopy equivalenc
exotic?

Remarks: Note that the existence of the (PL) exotic homotopy equivalence in part (A)
implies that the manifold above is s-cobordant to S2 × RP2.
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Update: The answer to (A) is yes, for this is a topological surgery problem for a good group
(see Problem 4.6 Update).

For (B), the homotopy equivalence is exotic [16,Akbulut,1984].

Problem 4.15 (Y. Matsumoto) Is Scharlemann’s exoticS1×S3#S2×S2 an exotic man-
ifold or an exotic self-homotopy equivalence of S1 × S3#S2 × S2 [965,Scharlemann,1976a,
Duke Math. J.] ?

Remarks: After connected sum with S2 × S2, Scharlemann’s manifold is diffeomorphic to
S1 × S3#2(S2 × S2) [307,Fintushel & Pao,1977,Proc. Amer. Math. Soc.].

Update: Scharlemann’s example is constructed by surgering a circle α in P 3 × S1 where
P 3 is the Poincaré homology sphere and 〈α〉 normally generates π1(P ). There are 118
such 〈α〉 and some give 4-manifolds diffeomorphic to S1 × S3#S2 × S2, and hence exotic
self homotopy equivalences . R. Lee (see [178,Cappell & Shaneson,1971,Comment. Math.
Helv.;Prop. 3.2 on page 515] had already constructed an exotic self-homotopy equivalence of
S3×S1#S2×S2. Note that all of these exotic self homotopy equivalences are homotopic to
homeomorphisms [336,Freedman & Quinn,1990]. Exotic smooth structures on S1×S3#S2×
S2 can also be constructed by surgery on null-homotopic, smoothly imbedded S2’s in S2×S2

which do not bound smoothly imbedded B3’s [964,Sato,1994,Proc. Amer. Math. Soc.].

Note that Scharlemann’s example, and Akbulut’s example of an exotic S1×̃S3#S2 × S2

are both Gluck constructions on the standard manifolds [16,Akbulut,1984], [17,Akbulut,
1985], [18,Akbulut,1988,Topology].

Problem 4.16 (Akbulut & Kirby) Does every diffeomorphism of the boundary of a con-
tractible 4-manifold X4 extend over X4?

Remarks: If not, there is a counterexample to the relative h-cobordism theorem in dimen-
sion 5. Here is a candidate for a diffeomorphism which does not extend: In the symmetric
link below, we can add 2-handles (to B4) to both circles with framing 0. The boundary of
this 4-manifold has an obvious involution obtained by switching circles. Let the contractible
manifold X4 be obtained by surgering one of the two obvious 2-spheres; X4 is a well-known
Mazur manifold.
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0 0

Figure 4.16.1.

Update: Every diffeomorphism extends to a homeomorphism by [329,Freedman,1982,J.
Differential Geom.]. However Akbulut [19,1991a,J. Differential Geom.;Figure 1] has shown
that the diffeomorphism constructed above (he uses the mirror reflection of the example
above) does not extend to a diffeomorphism of the 4-manifold. From this he constructs
two 1-connected, 4-manifolds with diffeomorphic boundaries (and rank H2 = 1) which are
not diffeomorphic, [21,Akbulut,1991c,J. Differential Geom.]. These are, at this time, the
smallest such.

Problem 4.17 (Thurston) Can a homology 4-sphere ever be a K(π, 1)? Who knows an
example of a rational homology 4-sphere which is a K(π, 1)?

Remarks: Many homology 3-spheres are K(π, 1)’s, e.g., any Brieskorn Σ(p, q, r) wih p, q, r
pairwise coprime and infinite fundamental group.

Update: Still open, but see [236,Davis,1985,Proc. Amer. Math. Soc.] for a sugges-
tion. Also note that if the fundamental group of a finite aspherical complex has an infinite
amenable normal subgroup, then the Euler characteristic must be zero [194,Cheeger & Gro-
mov,1986,Topology]; thus the fundamental group of an aspherical homology 4-sphere cannot
have an infinite amenable normal subgroup.

Luo has given examples of rational homology spheres [685,Luo,1988,Proc. Amer. Math.
Soc.].

Note that there exist finitely presented groups Gn such that

H∗(Gn) ≡ H∗(K(Gn, 1);Z) ∼= H∗(S
n;Z)

for all n [75,Baumslag, Dyer, & Miller, III,1983,Topology], [558,Kan & Thurston,1976,
Topology].
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Problem 4.18 Does every simply connected, closed 4-manifold have a handlebody decom-
position without 1-handles? Without 1- and 3-handles?

Remarks: Because there are nontrivial groups G which cannot be trivialized by adding
the same number of generators and relations [373,Gerstenhaber & Rothaus,1962,Proc. Nat.
Acad. Sci. U.S.A.], there are contractible 4-manifolds V 4, with π1(∂V 4) = G, that require
1-handles (Casson). On the other hand, nonsingular complex hypersurfaces in CP3 need
no 1-handles [954,Rudolph,1976,Topology], or even 3-handles [444,Harer, Kas, & Kirby,
1986], [439,Harer,1978,Math. Ann.], [28,Akbulut & Kirby,1980,Math. Ann.]). This is true
(Mandelbaum) for complete intersections (the intersection of n hypersurfaces in CPn+2 which
are in general position). If 1-handles are unnecessary, then there is a geometric proof [692,
Mandelbaum & Moishezon,1983] of some of Rohlin’s inequalities [931,1971,Functional Anal.
Appl.] using Tristram’s work [1062,1969,Math. Proc. Cambridge Philos. Soc.].

Update: No progress, but there are two relevant papers by Trace [1060,1980,Proc. Amer.
Math. Soc.] and [1061,1982,Pacific J. Math.]. A good example to work on is the Dolgachev
surface in [444,Harer, Kas, & Kirby,1986].

Problem 4.19 (A) Does any integral, unimodular, symmetric, bilinear form contain a
characteristic element α (i.e., α · x = x · x (mod 2) for all x) such that α · α = σ.

Remarks: Yes for indefinite forms and definite forms of rank ≤ 16.

(B) Does every orientable, closed, smooth M4 smoothly imbed in R7?

Remarks:

1. M4 smoothly imbeds in R7 ⇔ there exists α ∈ H2(M ;Z) such that α · x = x · x
(mod 2) for all x ∈ H2(M ;Z), and α · α = σ(M4) [110,Boéchat & Haefliger,

1970]. The simply connected case is already interesting, where characteristic
elements (integral duals to the second Stiefel–Whitney class) are known to exist,
with α · α ≡ σ(M4) (mod 8).

2. M4 PL imbeds in R7 [491,Hirsch,1965,Math. Proc. Cambridge Philos. Soc.].

3. M4 PL imbeds in R6 ⇔ M4 is a spin manifold (in which case the imbedding
can be chosen to have a single nonlocally flat point). M4 smoothly imbeds in
R6 ⇔M4 is spin and σ(M4) = 0 (Cappell & Shaneson).

Update:

(A) In 1981 Odlysko and Sloane [852,1981,J. Reine Angew. Math.] verified (A) for even
definite forms of rank ≤ 72.
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(B) Yes, because Remark 1 implies that we need only consider 4-manifolds with definite
intersection forms (otherwise there is a characteristic element satisfying the Boéchat
& Haefliger condition). But Donaldson [247,1983,J. Differential Geom.], [250,1987b,J.
Differential Geom.] has shown that all such manifolds have forms ±⊕ k〈1〉, and these
have a characteristic element α, the sum of the generators, for which α · α = σ.

Note that this was the last case of the hard Whitney imbedding theorems which state
that Mm smoothly imbeds in R2m [1112,Whitney,1944,Ann. of Math.; page 236], and
if M is orientable, then M imbeds in R2m−1; the latter is easy for m = 2, is due
to Hirsch [490,Hirsch,1961,Ann. of Math.] for m = 3, follows from [426,Haefliger
& Hirsch,1963,Topology], [702,Massey,1960,Amer. J. Math.], [703,Massey,1962,Proc.
Amer. Math. Soc.], [704,Massey & Peterson,1963,Bol. Soc. Mat. Mexicana], [1123,
Wu,1963,Sci. Sinica] for m ≥ 5, and was open for m = 4.

A reference for Remark (3) is [943,Ruberman,1982,Math. Proc. Cambridge Philos.
Soc.].

The topological case remains open, but here is a related theorem: If M is a closed,
simply connected topological 4-manifold with odd intersection pairing, then M admits
a locally linear involution iff the Kirby–Siebenmann stable triangulation obstruction
vanishes and, as above, there is an indivisible characteristic element α ∈ H2(M ;Z)
such that α · α = σ(M) [270,Edmonds,1988,Topology Appl.].

For codimension one imbeddings, see Problem 4.63.

Problem 4.20 (R. Fenn) Does there exist an M4 which immerses in R6 with just one
triple point (like Boy’s surface in R3)?

Update: No, in the orientable case. Herbert [479,1981] and White [1109,1975] proved
that the algebraic number of triple points of a generic immersion is −p1(M)/3 = −σ(M).
But p1(TM ⊕ νM ) = p1(M) + χ3(νM) = 0 so −p1(M) = χ2(νM). But the double point
set is an integral dual ξ to ω2(M), so ξ · ξ ≡ σ(M) (mod 8), and χ2(νM) = ξ · ξ. Thus
−3σ(M) ≡ σ(M) (mod 8), so the signature is even, as is the number of triple points.

But yes in the non-orientable case [517,Hughes,1983,Quart. J. Math. Oxford Ser. (2)].
Immerse RP2 × RP2 as Boy’s surface cross itself, which (by the last paragraph) has an odd
number of triple points. Remove these in pairs by ambient surgery to get an immersion of
RP2 × RP2#n(S1 × S3) with a single triple point.

Problem 4.21 (T. Price) Let M4 be a 4-manifold with boundary. Characterize the fol-
lowing isotopy classes of imbedded circles, J , in ∂M4.
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(A) J bounds an imbedded PL (not necessarily locally flat) 2-ball in M4. (This is Dehn’s
lemma in dimension 4.)

Remarks: A classical, unsolved case is Zeeman’s example: Add a handle to S1 × B3

along the curve C drawn below; does J = S1×∗, ∗ ∈ ∂B3, bound a PL 2-ball? J does
bound a 2-ball which is wild along the boundary J [378,Giffen,1977].

J

S1 ×B3

C

(B) J bounds a smooth immersed 2-ball with null-homologous image.

(C) J bounds an imbedded, orientable, smooth surface F 2 in M4 with H1(F ;Z)→ H1(M ;Z)
being the zero map.

Remarks: (A)⇒ (B)⇒ (C). There are other possible definitions of null-homologous singu-
larities, e.g., define the self-intersection number of an immersion f : B2 → M4 with double
points p1, . . . , pk to be

∑k
i=1 εi(gi + g−1

i ) ∈ Z[H1(M)] where εi = ±1 is the sign of pi, and gi
is represented by the image of an arc in B2 joining the two points in f−1(pi); then

(D) J bounds a smooth immersed 2-ball with self-intersection number zero.

Note that (B)⇒ (D) ⇒ (C). One can replace homology by homotopy throughout.

Update: Akbulut [20,1991b,Topology] has shown that in the example above, J does not
bound a PL 2-ball. This fact follows quickly from the example in Problem 4.16 which is
very deep and uses gauge theory. No other progress on this problem is known when M4 is
contractible. For other M4 the questions are still wide open. Note that (C) is related to
Problem 4.112.
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Problem 4.22 (Gordon) Let Σ3 be a homology 3-sphere which bounds an acyclic 4-
manifold V 4 such that π1(Σ3) → π1(V 4) is surjective. Let K be a knot in Σ3. Define
K to be homotopically ribbon in V if there is a smoothly imbedded B2 in V , ∂B2 = K, such
that π1(Σ3 −K)→ π1(V − B2) is surjective.

(A) Does K slice in V imply K homotopically ribbon in V ?

(B) Does (A) hold at least for contractible V ?

Remarks: The classical slice implies ribbon conjecture (Problem 1.33) splits into two parts,
slice implies homotopically ribbon (in B4) and homotopically ribbon implies ribbon.

Update: Casson & Gordon [187,1983,Invent. Math.] show that either the answer to (B)
is no, or there exists a curve in the boundary of the contractible 4-manifold which does not
bound a PL disk. However Akbulut (see previous Problem) has shown that the latter can
happen.

Problem 4.23 Let f : S2 → CP2 be a smooth imbedding which represents the generator
of H2(CP2;Z).

Conjecture: (CP2, f(S2)) is pairwise diffeomorphic to (CP2,CP1). Perhaps, f(S2) is
even isotopic to CP1.

Remarks: The conjecture may be easier than the 4-dimensional Poincaré conjecture which
implies it.

Update: The conjecture is true in the topological case, using Freedman’s [329,1982,J. Dif-
ferential Geom.] topological 4-dimensional Poincaré conjecture (after blowing down f(S2)),
even if f(S2) is only locally flat (see Problem 4.31 Update).

If f is symplectic for some symplectic structure, then Gromov [414,1985,Invent. Math.]
shows that the symplectic structure is standard and f is isotopic to the inclusionCP1 ↪→ CP2.

Problem 4.24 (Gluck) Let K2 ↪→ S4 be a knotted 2-sphere. If we cut out a tubu-
lar neighborhood of K2 and sew it back in with a twist (i.e., the nontrivial element of
π1(SO(3)) = Z/2Z gives the twist S1 × S2 → S1 × S2), then the resulting manifold is a
homotopy 4-sphere Σ4.

Question: Must it be S4?
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Remarks: (P. Melvin) This is equivalent to asking whether (CP2,CP1)#(S4, K2) is pairwise
diffeomorphic to (CP2,CP1) (see the previous Problem 4.23).

Update: Yes topologically, but the question is still wide open in the smooth case. One
smoothly gets S4 if K is 0-null-bordant (see Problem 1.105) [745,Melvin,1977] (for spun
knots and the original treatment, see [387,Gluck,1962,Trans. Amer. Math. Soc.]). Note
that Σ4#± CP2 is diffeomorphic to ±CP2.

Problem 4.25 (Y. Matsumoto) Does there exist a smooth, compactW 4, homotopy equiv-
alent to S2, which is spineless, i.e., contains no PL imbedded S2 representing the generator
of H2(W )?

Remarks: There is such an example for T 2 instead of S2 [708,Matsumoto,1975,Bull. Amer.
Math. Soc.].

Update: No progress. However there exists a non-compact example [717,Matsumoto &
Venema,1979,Invent. Math.], as well as many compact examples in genus 1 or more [566,
Kawauchi,1980,Trans. Amer. Math. Soc.]. Compare Problem 4.73.

Problem 4.26 (L. Taylor) Construct a fake Hopf bundle by realizing Γ = 3γ0+γ1+. . .+γ8

in CP2#8(−CP2) by a PL imbedded sphere and taking a regular neighborhood (γi is the
generator of H2(±CP2); the Hopf bundle is B4 ∪ 2-handle attached to the trefoil knot with
+1 framing). Twice the core of this Hopf bundle can be represented by a smoothly imbedded
double torus.

Can it be represented by a torus? A sphere?

Remarks: rΓ cannot be represented by a smoothly imbedded sphere if r = 1 [572,Kervaire
& Milnor,1961,Proc. Nat. Acad. Sci. U.S.A.] or if r ≥ 3 [1062,Tristram,1969,Math. Proc.
Cambridge Philos. Soc.]; [513,Hsiang & Szczarba,1971]. The double branched cover of this
Hopf bundle along the imbedded surface can be used to construct a spin manifold of signature
16 and betti number 22 (double torus), 20 (torus), or 18 (sphere).

Update: The answer is no because of the last sentence of the Remarks and [248,Donaldson,
1986,J. Differential Geom.]; note that there is a 2-torsion assumption that can be satisfied
[614,Kotschick & Matic,1995,Math. Proc. Cambridge Philos. Soc.] or can be avoided using
Seiberg–Witten invariants.

Problem 4.27 (A) (Weintraub) Does every simply connected, closed 4-manifold have a
basis for H2 consisting of PL imbedded 2-spheres? Smooth?
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Remarks: Yes, in the PL case, if there is a 2-dimensional spine, or if there are no
1-handles (see Problem 4.18).

(B) (Fenn) Which even elements of π2(RP2× T 2) ∼= Z can be represented by PL imbedded
spheres?

Remarks: Odd elements cannot be represented [299,Fenn,1973,Math. Proc. Cam-
bridge Philos. Soc.] .

Update: (A) No in the smooth case using gauge theory.

(B) The odd elements cannot be represented by locally flat imbeddings because Wall’s
self-intersection obstruction at the group element of order 2 is nontrivial; this argument also
works for PL spheres.

Problem 4.28 (Y. Matsumoto) Construct M4 by adding two 2-handles with 0-framing
to B4 along the link below.

(A) Can the generators of H2(M4) be represented by a smoothly imbedded wedge of two
2-spheres?

(B) Can one of the generators be represented by a smoothly imbedded S2?

(C) In M4#kS2 × S2, k arbitrary, can a half-basis of H2(M4) be represented by k + 1
smoothly imbedded, disjoint 2-spheres?

0 0

Remarks: (A) ⇒ (B) ⇒ (C). The generators of H2(M4) are represented by two Casson
flexible handles, i.e., by an open subset proper homotopy equivalent to S2 × S2− point (see
Problem 1.39). A no for (A) implies the Casson handles are exotic.
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(A) implies that ∂M4 bounds a contractible 4-manifold, and (B) implies that ∂M4 bounds
an acyclic 4-manifold (in both cases by surgering an S2). (C) holds iff ∂M4 bounds an acyclic
smooth 4-manifold.

Update: The answer to (A) is no [23,Akbulut,1995a], by an application of Donaldson’s
Theorem C in [248,1986,J. Differential Geom.], in fact, Akbulut shows that ∂M4 cannot
bound a contractible 4-manifold, nor a homology 4-ball W such that π1(∂M) → π1(W ) is
onto.

Note that if one framing is changed for 0 to 6, then the resulting homology 3-sphere
bounds a contractible 4-manifold, [701,Maruyama,1984,J. Tsuda College; page 11] and [710,
Matsumoto,1982b,J. Fac. Sci. Univ. Tokyo Sect. IA Math.; page 294].

Problem 4.29 (M. Kato) If F is a smooth, orientable, closed surface in S4, is H2(π1(S4−
F );Z) = 0?

Remarks: If so, then the class of fundamental groups of surface complements in S4 is
exactly Kervaire’s class of finitely presented groups of weight one with Hi(G;Z) = Hi(Z;Z),
i = 1, 2, which occur as knot groups in higher dimensions. That Kervaire’s groups are
realized by surfaces follows from arguments of T. Yajima [1126,1969,Osaka J. Math.], [1127,
1970,Proc. Japan Acad. Ser. A Math. Sci.].

Update: Examples of surfaces F → S4 with H2(π1(S4−F );Z) 6= 0 have been given by [689,
Maeda & Yajima,1976,Math. Sem. Notes, Kwansei Gakuin Univ.], [688,Maeda,1977,Math.
Sem. Notes Kobe Univ.], [154,Brunner, Mayland, Jr., & Simon,1982,Pacific J. Math.], [402,
Gordon,1981a,Math. Proc. Cambridge Philos. Soc.], and [666,Litherland,1981,Quart. J.
Math. Oxford Ser. (2)]. In particular, Litherland shows that ifA is an abelian group with 2g
generators, then there is a closed surface of genus g, Fg, and a smooth imbedding Fg → S4

such that H2(π1(S4 − Fg);Z) = A.

Problem 4.30 Given an imbedding of T 2 in R4 with 4 critical points (with respect to pro-
jection to a coordinate axis), is it standard (up to isotopy)?

Remarks: Observe the example

which is standard.
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Update: Kreck & Teichner [621,1995] have shown that any locally flat topological imbed-
ding of an oriented surface in S4, whose complement has abelian fundamental group, is
standard. A smooth torus with 4 critical points has such a group, and hence is standard.

Also note that a smooth imbedding of RP2 with 3 critical points is standard [109,Bleiler
& Scharlemann,1988,Topology].

Problem 4.31 Conjecture: Any locally flat surface in a 4-manifold has a normal bundle.

Remarks: This is true for codimension two imbeddings in other dimensions [584,Kirby &
Siebenmann,1974].

Update: The conjecture is true [336,Freedman & Quinn,1990; page 137]. (Note that the
proof in [577,Kirby,1970] fails in Step 3 on page 419, and it hasn’t been repaired.)

Problem 4.32 (Schoenflies) Conjecture: If S3 is PL imbedded in S4, then its closed
complements are PL 4-balls.

Remarks: Note that they are TOP 4-balls since the S3 is (PL) locally flat.

Update: The conjecture has been proved in the special case where there is a smooth function
f : S4 → R whose restriction to the S3 is Morse with k 0-handles and ≤ k + 1 1-handles (so
that the middle level has genus ≤ 2) [967,Scharlemann,1984,Topology].

Problem 4.33 (Fenn) If S3 is locally flatly imbedded in S2 × S2, does it bound a TOP
4-ball? One may wish to assume a smooth imbedding.

Remarks: Suppose the Casson continuum [188,Casson & Gordon,1986] is cellular inS2×S2;
then its end is S3 × R. For the converse we need an affirmative answer to this problem.

Update: The S3 must bound a contractible topological 4-manifold which is then homeo-
morphic to B4 by [329,Freedman,1982,J. Differential Geom.].

Problem 4.34 What is π0(Diff(S4))? Indeed, is Diff(S4) ' O(5)?

Remarks: The involution of S4 giving the Cappell–Shaneson exoticRP4 may not be isotopic
to the antipodal map (see Problem 4.13).

Update: No progress, but see Problem 4.126.
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Problem 4.35 (Hatcher) On the torus T n, n ≥ 5, there are many homeomorphisms con-
cordant but not isotopic to the identity [462,Hatcher,1978].

Are there such examples on T 4?

Update: Yes, Kwasik gave examples of diffeomorphisms of T 4 which are smoothly pseudo-
isotopic (i.e. concordant) to the identity, but not topologically isotopic [633,Kwasik,1987,
Math. Proc. Cambridge Philos. Soc.]. In the simply connected case, any topological
pseudo-isotopy can be isotoped to the identity [873,Perron,1986,Topology], [911,Quinn,1986,
J. Differential Geom.], and Kwasik in the above paper.

There are also examples on connected sums of metacyclic prism 3-manifolds of diffeo-
morphisms which are pseudo-isotopic but not isotopic [636,Kwasik & Schultz,1995].

Problem 4.36 (A) Thom Conjecture: The minimal genus of a smooth imbedded surface
in CP2 representing n ∈ H2(CP2;Z) = Z is (n− 1)(n − 2)/2.

Remarks: Any nonsingular algebraic curve in CP2 of degree n has genus (n− 1)(n−
2)/2. The minimal genus is at least n2/4−1 if n is even, and at least (n2(h2−1)/4h)−1 if
n ≡ 0 (mod h) and h is a power of an odd prime [931,Rochlin,1971,Functional Anal.
Appl.], and [513,Hsiang & Szczarba,1971] .

(B) Let S be a simply connected complex, algebraic surface and let α ∈ H2(S;Z). Suppose
α is represented by an algebraic curve of genus g (given by the formula 2g − 2 =
−c1 · α + α · α where c1 = first Chern class).

Conjecture: g is the minimal genus of any smoothly imbedded surface representing
α.

Remarks: This conjecture is risky. A counterexample could come from a simply
connected surface S which is diffeomorphic toM4#CP2 with odd indefinite intersection
form on M , for then all primitive, ordinary classes in S# − CP2 are represented by
2-spheres [1093,Wall,1964a,J. London Math. Soc.]. Apparently, no such surface is
known (see next problem).

Update:

(A) True as proved by Kronheimer & Mrowka [624,1994a,Bull. Amer. Math. Soc.] and by
Morgan, Szabó & Taubes [793,Morgan, Szabó, & Taubes,1995] using Seiberg–Witten
gauge theory. The conjecture fails if smooth imbedding is replace by locally flat imbed-
ding. Rudolph gave the first counterexamples and also the smallest degree counterex-
ample for d=5 [957,Rudolph,1984,Comment. Math. Helv.]. Lee & Wilczynski have
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counterexamples whose complements have fundamental group Z/dZ [646,1995]; their
counterexamples sometimes show that the Rohlin and Hsiang & Szczarba bounds (men-
tioned above) are sharp.

(B) True if α · α ≥ 0, by arguments which are easier if b+2 ≥ 3, using Seiberg–Witten gauge
theory as above (this was done first by Kronheimer & Mrowka, and independently by
Morgan, Szabó & Taubes).

There is a version for immersed spheres with no condition on α · α; it estimates the
number of positive double points ([316,Fintushel & Stern,1995a] and, using Seiberg–
Witten invariants, [317,Fintushel & Stern,1995b,Turkish J. Math.]).

For α ·α < 0 there are estimates on the minimal genus which in general fall short of the
generalized conjecture [614,Kotschick & Matic,1995,Math. Proc. Cambridge Philos.
Soc.].

For non Kähler surfaces, the conjecture is trivially false because, for example, there is
a holomorphic S1 × S1 in the Hopf surface S3 × S1.

Note that when this problem was written in 1977, Thom’s name was not generally
associated with the conjecture; however the association developed later although it
is not clear whether Thom ever made the conjecture. In the early 70’s, the handful
of workers in the smooth topology of closed, simply connected 4-manifolds were well
aware that all their examples came from complex surfaces, and that they didn’t know
how to show that smooth constructions couldn’t be complex. The obvious questions
in those days included the conjectures in this problem, as well as what is now called
the 11/8–Conjecture (Problem 4.92) and the 3/2–Conjecture (Problem 4.93).

Problem 4.37 A simply connected, complex analytic surface S may contain exceptional
curves (complexCP1’s with self-intersection−1) in which case S is diffeomorphic toM4#r(−CP2).

Can S be decomposed as a connected sum in any other way?

Remarks: (Yau) If β2(S) = 1, then S = CP2; otherwise S has an indefinite intersection
form and S decomposes homotopically.

Update: A complex, analytic surface is Kähler iff b1 is even, and in this case the surface can
even be deformed to an algebraic surface (the deformation is in [596,Kodaira,1964,Amer. J.
Math.] and even b1 implies Kähler follows from the Kodaira classification plus work of [773,
Miyaoka,1974,Proc. Japan Acad. Ser. A Math. Sci.], [1057,Todorov,1980,Invent. Math.]
and [1002,Siu,1983,Invent. Math.]). Since S is algebraic (and simply connected), it follows
that if S decomposes, one of the summands, N , must have negative definite intersection
form [251,Donaldson,1990,Topology] which must be diagonal over Z [247,Donaldson,1983,
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J. Differential Geom.]. However this summand N is not yet known to be diffeomorphic to a
connected sum of −CP2’s.

If S is not simply connected, but b1 is even, then the above conclusions are all true and
π1(N) has no non-trivial finite quotient [609,Kotschick,1993,Internat. Math. Res. Notices,
bound within Duke Math. J.]. Gromov [416,1989,C.R. Acad. Sci. Paris Sér. I Math.]
proves that one of the summands must be simply connected.

There exists a minimal Class V II0 surface with b1 = 1, b+2 = 0, which smoothly splits off
a −CP2 [562,Kato,1978].

Recently, Kotschick [611,1995a] proved that a minimal, symplectic, four-manifold with
b+2 > 1, and with residually finite fundamental group, is irreducible (every imbedded 3-
sphere bounds a contractible manifold). This implies that complex surfaces with even b1
which satisfy the assumptions of the theorem have no connected sum decompositions at all
(unless one of the summands is a homotopy sphere).

Problem 4.38 (A. Kas) Let F 2 be a closed orientable 2-manifold. Let γ1, . . . , γn be
imbedded circles in F 2. let τi : F 2 → F 2 (i = 1, . . . , n) be a left-handed Dehn (Lickor-
ish) twist about the circle γi. Assume that τn ◦ . . . ◦ τ2 ◦ τ1 : F 2 → F 2 is isotopic to the
identity.

Conjecture: Let E ⊂ H1(F 2;Q) be the subspace spanned by the γi (i = 1, . . . , n). Then
the alternating intersection form is nondegenerate on E.

Remarks: This conjecture gives a topological proof of the hard Lefschetz theorem for
complex algebraic surfaces. Let S be an algebraic surface and let F ⊂ S be a generic hyper-
plane section. The states that intersection with F defines an isomorphism from H3(S;Q) to
H1(S;Q) (see Mumford’s appendix to Chapter VI, in [1137,Zariski,1935; pages 151–152]).

Update: No known progress. However, the hard Lefschetz theorem fails for symplectic 4-
manifolds; if these have Lefschetz pencils, then a proof along the lines of this problem (using
pencils) is unlikely.

Problem 4.39 (T. Matumoto) Find new examples of complex surfaces with positive sig-
nature.

Remarks: The only known simply connected example is CP2. There are non-simply con-
nected examples due to Hirzebruch [494,1978], also [135,Borel,1963,Topology] and [597,
Kodaira,1967,J. Analyse Math.].
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Notice that if S is a complex surface with c1 ≡ 0 (mod 2), then there exists a holomor-
phic line bundle 1

2
K (now called K1/2) such that

σ(S) = −8(2 dimH0(S;O(
1

2
K))− dimH1(S;O(

1

2
K))).

It follows that H1(S;O(1
2
K)) = 0 implies that σ(S) < 0.

Update: The basic numerical invariants of a compact, complex surface S are its Chern
numbers

c2(S) = χ(S)

and
c21(S) = 3σ(S) + 2χ(S) = 3σ(S) + 2c2(S).

(Since p1 = c21−2c2, the latter equality is familiar to topologists as the Hirzebruch signature
theorem: p1 = 3σ.) In 1976 Miyaoka [774,1977,Invent. Math.] and Yau [1133,1978,Comm.
Pure Appl. Math.] proved that c21 ≤ 3c2, the best possible inequality since compact quotients
of the complex ball satisfy c21 = 3c2, and conversely. Since, at that time, all known surfaces
with non-negative signature (equivalently c21 ≥ 2c2) had infinite fundamental groups, this
became conjectured for all such surfaces (the Bogomolov Watershed Conjecture).

This was disproved in 1985 by Moishezon & Teicher [778,1987,Invent. Math.] who
constructed a simply connected surface with zero signature and infinitely many with positive
signature.

This raised a geographical question: which pairs of integers (x, y) occur as the Chern
numbers (c21, c2) of a simply connected, complex surface (the above inequality c21 ≤ 3c2,
the Noether inequality, and the congruence c21 + c2 ≡ 0 (mod 12) must be satisfied by
(x, y) = (c21, c2))?

This question was nearly answered by Z. Chen [197,1987,Math. Ann.] who used a
different construction of surfaces with σ > 0 due to Xiao Gang (unpublished). Chen showed
that asymptotically, for large x, all lattice points (x, y) with x ≤ 2.7y can be realized by
simply connected surfaces with (x, y) = (c21, c2).

Kotschick has investigated topological properties of these surfaces [608,1992c,Topology]
and [607,1992b,Math. Ann.] and in the latter shows that the Moishezon–Teicher surfaces
are spin whereas the Chen surfaces are not.

Problem 4.40 (A) (Moishezon) Let C be an algebraic curve in CP2 which has only
ordinary quadratic singularities.

Conjecture: π1(CP2 − C) is commutative.
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Remarks: A point p is an ordinary quadratic singularity (or ordinary double point) if
there are local coordinates near p = (0, 0) such that C is given locally by x2 + y2 = 0.
It would follow that if C is irreducible of degree n, then π1(CP2 − C) = Z/nZ. The
conjecture is known for small n and large n.

Using a theorem of Severi, now considered unproven, Zariski published a proof of
the conjecture [1136,Zariski,1929,Amer. J. Math.]; also [1137,Zariski,1935; page 210].
Thus the conjecture can be proved by proving a topological analogue of Severi’s the-
orem. Let Fg be a compact, Riemann surface of genus g. Call a smooth immersion
g : F → CP2 semi-algebraic if there exists a point q ∈ CP2 − g(F ) such that the
projection (along lines through q) π : g(F ) → CP1 satisfies, (1) πg : F → CP1 is
holomorphic of, say, degree n, (2) in local coordinates, πg(z) = z or z2, (3) g and
πg are in general position, and (4) if d is the number of double points of g(F ), then
g = 1

2
(n− 1)(n − 2)− d.

(B) Let g1, g2 : F → CP2 be two semialgebraic immersions of degree n. Find an ambient
isotopy of CP2 carrying g1(F ) to g2(F ). (True for n ≤ 3.)

Update:

(A) The conjecture is true; an algebraic proof is given in [350,Fulton,1980,Ann. of Math.],
and a geometric version in [240,Deligne,1981].

(B) No progress.

Problem 4.41 There exists a smooth, proper imbedding of the Poincaré homology sphere P
minus a point in R4 with a possibly exotic smooth structure (Freedman). Exhibit this smooth
imbedding, or (easier) ignore the differentiability and construct a locally flat imbedding into
R4. Is there a smooth proper imbedding of P–pt. into R4?

Remarks: If yes, that would give an example of a smooth S2 in S4 which is topologically
unknotted, but smoothly knotted since it would have the punctured Poincaré homology
sphere as Seifert surface.

Update: No one has yet constructed an imbedding of the punctured Poincaré homology
sphere P . But Gompf has pointed out that there cannot be a smooth proper imbedding in
R4. For if so, following the Remark, then surgery on the smooth S2 linking ∞ = S4 − R4

would give a smooth, homotopy S3 × S1 containing P as a slice which contradicts Taubes’
end theorem [1036,Taubes,1987,J. Differential Geom.].

Problem 4.42 Let rḂ = {x ∈ R4 | |x| < r} and give rḂ the smooth structure inherited
from R4

θ, one of the exotic R4’s.
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(A) What is the largest value of r, say ρ, for which rḂ is diffeomorphic to R4, and what
happens at ρS3? (This depends on fixing an atlas representing θ.)

(B) Is rḂ diffeomorphic to R4
θ or to sḂ for any ρ < r < s?

Remarks: If so, then a furling argument gives an exotic structure on S3× S1. If not,
then the reals inject into the moduli space of smooth structures on R4.

(C) Does every smoothly imbedded S3 in R4
θ bound a smooth B4? Or, avoiding the smooth

4-dimensional Schoenflies conjecture, can it be engulfed in a standard R4 in R4
θ .

Update:

(A) No progress.

(B) For some R4
θ’s, these exotic R4’s are never diffeomorphic, [1036,Taubes,1987,J. Differ-

ential Geom.] providing at least a 2-parameter family of exotic R4’s, [389,Gompf,1985,
J. Differential Geom.].

(C) No progress.

Problem 4.43 (A) Can any exotic R4 be covered by a finite number of coordinate charts?
In particular, can an exotic R4 be the union of two copies of R4?

(B) Find a handlebody decomposition of an exotic R4.

(C) Describe in some usable way a complete Riemannian metric on an exotic R4. What
can be said about the topology of the cut locus for this metric?

(D) Does there exist an exotic R4 which cannot be split by a smooth proper R3 into two
exotic pieces?

Update:

(A) Freedman produced examples of exotic R4’s with only finitely many coordinate charts
when he constructed exotic R4’s which imbed in S4 (see the exposition in [578,Kirby,
1989; pages 98–101]); since the interior of a Casson handle is diffeomorphic to R4, then
one gets examples by adding finitely many Casson handles to a compact smooth 4-
manifold (and deleting the remaining boundary). A simple example with 3 charts is
obtained by adding the simplest Casson handle (one positive kink at each stage) to
the complement of a smooth ribbon-slice for the (−3,−3, 3) pretzel knot [101,Bižaca
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& Gompf,1995], (one chart is the 0-handle tubed to the Casson handle, the second
chart is a neighborhood of the 1-handles tubed together, and the third chart is derived
similarly from the 2-handles).

Of course an exotic R4 can be covered with 5 charts in the same sense that any
smoothly–triangulated m-manifold can be covered by (m + 1) smooth charts (cover
the vertices with small disjoint charts which are then tubed together to form one
chart; next cover the barycenters of the 1-simplices and tube to get the second chart;
and so on).

(B) Bižaca was the first to find an explicit description of an (extremely large) handlebody
decomposition of an exotic R4 [99,Bižaca,1994,J. Differential Geom.], but the con-
struction was quickly simplified to that in the next to the last paragraph. Note that
a Casson handle which has a branch with all positive kinks is exotic, and any of these
can be used to make examples, as above.

(C) No progress.

(D) No progress.

Problem 4.44 (A) Can every homeomorphism of R4 be approximated by a Lipschitz home-
omorphism?

(B) Does Donaldson’s theorem hold in the Lipschitz category?

Remarks: (Sullivan) If the answer to (A) is yes, then every topological 4-manifold has a
Lipschitz structure, (see [1017,Sullivan,1979]), negating (B). Recall that in higher dimensions
the answer to (A) is yes; in fact Lipschitz can be replaced by PL or DIFF [221,Connell,1963,
Ann. of Math.] in (A), and furthermore, TOP = Lipschitz in dimensions 6= 4 [Sullivan,
ibid.].

Update:

(A) No.

(B) Yes.

Both follow from [253,Donaldson & Sullivan,1989,Acta Math.]. They extend enough
of gauge theory to quasiconformal 4-manifolds (or Lipschitz) so as to exhibit both non-
existence and non-uniqueness of quasiconformal structures on topological 4-manifolds; this
gives a negative answer to (A) (page 183 [ibid.]).
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Note that we still do not know that every quasiconformal 4-manifold has a smooth struc-
ture, or that two smooth 4-manifolds are diffeomorphic if they are quasiconformally equiva-
lent (see Problem 4.75).

Problem 4.45 Does there exist an exotic differentiable structure on S4? On S3 × S1? On
any other closed orientable, smooth 4-manifold?

Remarks: There are plenty of candidates. For example, the Gluck construction on any
knotted S2 in S4 gives a homotopy 4-sphere (for a specific example without 3-handles, see
[29,Akbulut & Kirby,1985,Topology]), or any presentation of the trivial group which cannot
be trivialized by Andrews–Curtis moves gives a smooth homotopy 5-ball whose boundary
may be exotic. For possibly exotic S3 × S1’s, see Problem 4.42.

The existence of many exotic smooth structures on non-compact 4-manifolds makes an
affirmative answer seem likely.

Exotic smooth structures on non-orientable 4-manifolds abound; several topologists have
found isolated examples [181,Cappell & Shaneson,1976,Ann. of Math.], [308,Fintushel &
Stern,1981,Ann. of Math.], [18,Akbulut,1988,Topology], [309,Fintushel & Stern,1984], and
[618,Kreck,1984] has found large classes.

Update: The problem is still open for S4 and S3× S1, but there are plenty of examples on
larger closed, orientable 4-manifolds. The first example, the rational surface CP2#9(−CP2)
and its logarithmic transforms, was given by Donaldson in 1985 [249,1987a,J. Differential
Geom.]. The smallest (smallest rank H2) closed example is the Barlow surface (homeomor-
phic to CP2#8(−CP2)) [605,Kotschick,1989,Invent. Math.]. For manifolds with boundary,
the smallest example is Akbulut’s [21,1991c,J. Differential Geom.] (see Problem 4.16). All
examples rely on gauge theory, in particular Donaldson polynomials [252,Donaldson & Kro-
nheimer,1990]. (Also, see Problem 4.85.)

Problem 4.46 (Freedman) Is a positive untwisted double of the Borromean rings topolog-
ically slice?

Remarks: This is a simple case of the kind of slicing problem one runs into with some
approaches to the topological s-cobordism conjecture. The answer is yes if either non-simply
connected surgery or the proper s-cobordism theorem holds.

Update: No progress. This still seems to be a crucial test case for extending Freedman’s
work to all fundamental groups (see Chapter 12 in [336,Freedman & Quinn,1990], and also
[335,Freedman & Lin,1989,Topology]).
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Problem 4.47 (Freedman) Let X be the cone on the unlink of n components in S3. Sup-
pose X is imbedded properly in B4 and is locally flat except at the cone point ∗. Suppose the
local homotopy at ∗ is free. Does this imply that the imbedding is flat, i.e. has a neighborhood
homeomorphic to a neighborhood of the standard imbedding of X in B4?

Remarks: If yes, then topological non-simply connected surgery works and we almost get
the s-cobordism theorem; conversely, the s-cobordism theorem for all π1 would imply yes.
Note that each disk in X is flat by itself.

Update: No progress, but note that the imprecise condition local homotopy at ∗ is free
should be that the local homotopy type of the complement of X is that of a wedge of circles.

Problem 4.48 (Freedman) Find a homotopy theoretic criterion for when M3/Y ⊂ R4

has a one-sided mapping cylinder neighborhood, where Y is an acyclic set in the 3-manifold
M .

Remarks: (Quinn) has such a criterion when Y is a CE set. A reasonable criterion would
give the topological s-cobordism theorem. An interesting acyclic set is obtained by starting
with a genus two handlebody Y0; get Y1 by reimbedding Y0 in itself according to any two
distinct words in the commutators of the two generators of π1(Y0); get Y2 by reimbedding Y0

in Y1 according to the same two words, or any other such pair. Continue, and letY = ∩∞k=0Yk.

Update: No progress. This problem had the same goal as Problems 4.46 and 4.47, but this
approach, as Freedman puts it, should die a graceful death.

Problem 4.49 If M3 is a homology 3-sphere, does M#(−M) bound a smooth contractible
4-manifold?

Remarks: It bounds a topological, contractible 4-manifold (Freedman) and it smoothly
bounds M3 × I .

Update: Not always; Akbulut observed [1036,1987,J. Differential Geom.] that ifM bounds
a smooth, simply connected W 4 having a non-diagonalizable, definite intersection form, e.g.
the Poincaré homology sphere , then M#(−M) does not bound a smooth contractible 4-
manifold, nor, for that matter, a smooth, simply connected, definite manifold.

Problem 4.50 Is each simply connected, smooth, closed 4-manifold (other than S4) realized
as a connected sum of complex surfaces (with or without their preferred orientations)?
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Remarks: Probably the answer is no, but Donaldson’s work makes yes a bit more likely.
Furthermore, yes is indicated by analogy with dimension 2 where every orientable closed
2-manifold is a complex curve.

Update: The answer is no. Gompf & Mrowka [397,1993,Ann. of Math.] have constructed
an infinite family of smooth 4-manifolds, homeomorphic to the K3 surface, but not diffeo-
morphic to a connected sum of complex surfaces.

However it is still possible that each smooth, simply connected, closed 4-manifold is
homotopy equivalent to a connected sum of complex surfaces (see the 11/8–Conjecture,
Problem 4.103). Equivalently, are more simply connected homotopy types realized by smooth
manifolds than by connected sums of complex surfaces? Without the assumption of simple
connectivity, the latter is certainly true, because all finitely presented groups are fundamental
groups of closed, smooth, 4-manifolds, but relatively few are fundamental groups of complex
surfaces.

Problem 4.51 (Akbulut) (A) If M4
1 and M4

2 are simple homotopy equivalent, closed,
smooth 4-manifolds, can we pass fromM1 to M2 by a series of Gluck twists on imbedded
2-spheres?

Remarks: No for certain lens spaces cross S1 (S. Weinberger).

(B) Same question for a generalized Gluck twist, which is defined as follows:

Split M4 along a smooth submanifold N3 with closed complements W1 and W2. In
W1, find a properly imbedded, smooth 2-ball D1. Twist D1 by removing D1 × B2

and sewing back by spinning D1 k-times while traversing ∂B2. Then find a ∂D2 with
∂D2 = ∂D1 and twist back by −k. Thus N remains unchanged and we can reglue
along N .

In this way, a Cappell–Shaneson exotic RP4 can be changed to RP4 by splitting RP4 =
S1×̃B3 ∪RP2×̃B2 and twisting RP2×̃B2 along ∗ × B2 to RP2 × B2 (k = 1) and then
twisting back by a strange B2 in RP2 ×B2 [16,Akbulut,1984].

Update: There are now more cases where the answer to (A) is no. If one can pass from
M1 to M2 by a Gluck twist on a smooth imbedded S2, then it follows that M1#(−CP2) is
diffeomorphic to M2#(−CP2); but Donaldson invariants are preserved under blowing up, so
we need only begin with M1 and M2 having different invariants. The only known manifolds
for which the answer is yes are for S1×̃S3#S2× S2 and its exotic version [18,Akbulut,1988,
Topology].

(B) may still be true. Note that the genus 1 version of the Gluck twist is called the
logarithmic transform (see Problem 4.11), but this does not generalize to higher genus (see
Problem 3.49).
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Problem 4.52 Given Mm and Nn imbedded in Q4, is there an isotopy making Mm topo-
logically transverse to Nn when m = 3, n = 2 or m = 3, n = 3?

Remarks: The answer is yes for other m and n [909,Quinn,1982,J. Differential Geom.].
When Q is higher dimensional, see [696,Marin,1977,Ann. of Math.].

Update: The answer is yes, topological transversality holds in all cases [913,Quinn,1988,
Bull. Amer. Math. Soc.] and [336,Freedman & Quinn,1990].

Problem 4.53 (Mandelbaum) What (minimal) knowledge of homotopy groups, intersec-
tion pairings, etc. determines the homotopy type of a closed, compact 4-manifold?

Remarks: For π1(M4) = 0, the intersection form determines. For π1(M4) = Z/pZ, p prime,
then π1 and the intersection pairing π2(M)⊗ π2(M)→ Z[π1] determine, (C. T. C. Wall). Is
this theorem true for a larger class of fundamental groups? Give an example where π1 and
the intersection form do not suffice.

Let a generalized Lefschetz torus fibration M4 f
→ Fg be a map which is a torus bundle

off a finite number of points in Fg (= surface of genus g) and over those points f−1(p) is an
immersed 2-sphere with one transverse double point. Examples of these are complex elliptic
surfaces with no multiple fibers, and (Y. Matsumoto) simply connected, smooth 4-manifolds
without one and 3-handles. Mandelbaum & Harper have shown that a homotopy type of
a generalized Lefschetz torus fibration is determined by the genus g and the intersection
pairing H2(M ;Z) ⊗H2(M ;Z)→ Z.

Update: In the oriented case, the following data {π1, intersection pairing π2 ⊗ π2 → Z[π1],
and k-invariant k ∈ H3(π1; π2)} determine the homotopy type in the case that π1 is finite and
its 2-Sylow subgroup is cyclic or quaternion [432,Hambleton & Kreck,1988,Math. Ann.], [70,
Bauer,1988]. This is not true more generally because the above data does not distinguish
T 2 × S2 and the twisted S2−bundle T 2×̃S2. If one adds to the data either w2 or the
intersection form on H2, then apparently there are no counterexamples.

Less is known in the non-orientable case, but see [434,Hambleton, Kreck, & Teichner,
1994,Trans. Amer. Math. Soc.], [573,Kim, Kojima, & Raymond,1992,Trans. Amer. Math.
Soc.] and [486,Hillman,1994; Chap. IX]

Hillman [ibid.] determines the homotopy type from simple data in certain geometric cases.
For example, a closed orientable 4-manifoldM is simple homotopy equivalent to an F -bundle
over B (where F and B are orientable surfaces and F is not S2) iff χ(M) = χ(B)χ(F ) and
π1(M) is an extension of π1(B) by a normal subgroup isomorphic to π1(F ).
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Also, [72,Baues,1991] in principle classifies homotopy types of 4-complexes and hence
4-manifolds, but computations are difficult.

Problem 4.54 Find a geometric proof that Ω4
spin = Z.

Remarks: There exists such a proof that Ω4 = Z ([747,Melvin,1984]), but it is not clear
how to modify it to get the spin case.

Update: A proof is given in [578,Kirby,1989]; a spin 4-manifold with signature zero is
immersed in R6, and then spin borded to an imbedding which bounds a spin Seifert surface.

Given the current interest in SpinC, it is worth remarking that Ω4
SpinC

∼= Z ⊕ Z. The

isomorphism takes a pair (X4, L) (where L is a complex line bundle with c1(L) ≡ w2(X)
(mod 2)) to (σ(X), (c21(L) − σ(X))/8). Surely a proof exists in [1015,Stong,1968] (doing

the calculation may be easier), or can be found along the lines of Lemma 1, in [578,Kirby,
1989; page 65].

Problem 4.55 Describe the Fintushel–Stern involution on S4 in equations. (See [308,Fin-
tushel & Stern,1981,Ann. of Math.].)

Update: No progress.

Problem 4.56 (Melvin) Let M4 be a smooth closed orientable 4-manifold which supports
an effective action of a compact connected Lie group G. Suppose that π1M is a free group.

Question: Is M diffeomorphic to a connected sum of copies of S1 × S3, S2 × S2 and
S2×̃S2?

Remarks: The answer to both questions is yes for G 6= S1 or T 2; also for G = T 2 provided
the orbit space of the action (a compact orientable surface) is not a disc with ≥ 2 holes [746,
Melvin,1981,Math. Ann.].

Update: Still open.

Problem 4.57 Classify closed 4-manifolds which fiber

(A) over a circle with fiber an S1-manifold,
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(B) over a surface.

Remarks: If (in (A)) the monodromy is periodic and equivariant, then M supports a non-
singular T 2-action and is generally classified by π1M [858,Orlik & Raymond,1974,Topology].
Exceptions arise when π1M/center is finite, e.g. for S1 × L, L a lens space.

Update: The homotopy classification of 4-dimensional bundle spaces is considered in detail
in Chapters III and IV of [486,Hillman,1994].

Mapping tori may be characterized in terms of fundamental group, Euler characteristic,
Stiefel–Whitney classes and first k-invariant. (See Theorems III.2–4 of [ibid.] and their
Corollaries, and also [486,Hillman,1994]. In particular, a closed 4-manifold M is simple
homotopy equivalent to the mapping torus of a self homeomorphism of an aspherical Seifert
fibered 3-manifold if and only if χ(M) = 0 and π1(M) satisfies some clearly necessary
conditions, and there are only finitely many topological s-cobordism classes of 4-manifolds
in each such homotopy type. (See Theorem V.15 of [ibid.].)

Surface bundles are determined by π and χ in the aspherical cases; when the base or fiber
is S2 or RP2 other characteristic classes are needed, and the picture is not yet complete for
non-orientable surface bundles over RP2. (See Chapter IV of [ibid.]). When the base is an
aspherical surface, Wh(π) = 0, and in most cases there are only finitely many topological
s-cobordism classes of such manifolds with the same π and χ as a given bundle space. In
particular, S2-bundles over the torus or Klein bottle are determined up to homeomorphism
by π1, χ and w. (See Chapter V of [ibid.].)

The situation is less satisfactory for S1-bundles over 3-manifolds, but partial results are
given in Theorems III.8 and V.16 of [ibid.].

Problem 4.58 (Melvin) Let P ⊂ S4 be the standardly imbedded RP2 (e.g. P = q(RP2),
where q : CP2 → S4 is the quotient map by complex conjugation) and K ⊂ S4 be an odd
twist spun knot. Denote by (S4, P#K) the pairwise connected sum (S4, P )#(S4, K).

Is (S4, P#K) pairwise diffeomorphic to (S4, P )?

Remarks:

• They have the same 2-fold branched covers, namely (CP2,RP2) (Melvin), so a negative
answer yields an exotic involution on CP2 with fixed point set RP2 and quotient S4.

• π1(S4−P#K) = Z/2Z, so S4−N(P#K) is s-cobordant rel boundary to S4−N(P )
[640,Lawson,1984,Math. Ann.], where N( ) denotes an open tubular neighborhood.
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Update: It follows from Freedman’s topological s-cobordism theorem for π1 = Z/2Z that
(S4, P#K) is pairwise homeomorphic to (S4, P ), so the real question is whether (S4, P#K)
is an exotic smooth imbedding of RP2 in S4.

Finashin, Kreck & Viro ([305,1987,Bull. Amer. Math. Soc.] and details in [306,1988])
later produced exotic smooth imbeddings of a connected sum of 10 copies of RP2 in S4 using
gauge theory; the imbeddings are distinguished by their 2-fold branched covers which are
log transforms of E(1) (see the Update to Problem 4.11).

Problem 4.59 (Hillman) Minimize the Euler characteristic over all closed 4-manifolds M
with π1(M

4) = G given.

Remarks: Hopf’s Theorem gives H2(M̃)→ H2(M)→ H2(π1(M))→ 0 which puts a lower
bound on the rank of H2(M), given π1(M). But this minimum is not always achieved
(Hillman), e.g. let G = Z⊕Z so that H2(Z⊕Z) = Z, but χ(M) = −1 is not possible by an
Euler characteristic argument on the equivariant homology of the universal covering space.
Note that this problem generalizes the problem of which groups are the fundamental group
of a homology 4-sphere.

Update: Multiplicative properties of q(π) = min{χ(M) | M is an orientable closed 4-
manifold with π1(M) ∼= π} were used by Hausmann & Weinberger [468,1985,Comment.
Math. Helv.] to obtain new restrictions on the groups of homology 4-spheres. If π has a
finite 2-complex or closed orientable 4-manifold as a K(π, 1)-space then q(π) = χ(K(π, 1)).
(See Theorem II.12 of [486,Hillman,1994]). Hence orientable bundle spaces usually realize
the minimal value of q for their fundamental group. (For aspherical bundle spaces this is
clear; S2-bundles over aspherical surfaces have groups of cohomological dimension 2 and for
mapping tori see Theorem III.1 of [ibid.]).

Kotschick and F. E. A. Johnson have considered this invariant in connection with a
similar invariant p(π) ≤ q(π) involving the signature, and show that if π is the fundamental
group of an aspherical closed orientable 3-manifold then q(π) = 2. (See [610,Kotschick,1994],
[549,Johnson & Kotschick,1993,Math. Proc. Cambridge Philos. Soc.], and [549,Johnson &
Kotschick,1993,Math. Proc. Cambridge Philos. Soc.]. See also [681,Lück,1994,Topology].)

Problem 4.60 (Hass) Let M4 be closed, smooth and satisfy π2(M) = 0 but π3(M) 6= 0,
i.e. L(p, q)×S1. Is there a smooth imbedded 3-manifold L3, with finite cover S3, representing
a non-zero element of π3(M)?

Update: Ruberman [945,1990,Pacific J. Math.] gives a topological counterexample; that is,
there is a closed topological 4-manifold which is simple homotopy equivalent to S1×L(3, 1),



214 CHAPTER 4. 4-MANIFOLDS

but which contains no quotient of S3 by a finite group acting linearly which represents a
non-trivial element of π3.

Relaxing the condition that π2 = 0, Ruberman [ibid.] also shows that S2×T 2 contains no
imbedded smooth 3-manifold with finite π1 representing a non-trivial element of π3(S2×T 2).

Problem 4.61 (Hughes) (A) Find representatives for each regular homotopy class of im-
mersions of Sn in Rn+k.

Remarks: This is trivial for k > n and solved by Whitney–Graustein for S1 in R2. For
n = k, Smale’s solution is to add double points to get Z for n even or one, and Z/2Z
otherwise. For S2 in R3, Smale’s famous theorem (that Imm(Sn,Rn+k) = πn(Vn+k,n))
shows there is just one class. For S3 in R4, Hughes [516,Hughes,1982] gives two
generators gotten by capping off the track of an eversion of S2 in R3, and capping off
twice an eversion. The inclusion of the first of these solves the case S3 in R5. The next
interesting case is S4 in R5.

(B) Find representatives for all bordism classes of immersions of n-manifolds in Rn+k.

Remarks: This group is πsn+k(MSO(k)) (assuming orientability) [1105,Wells,1966,
Topology]. This has been solved for n = 1, and all k, and 2-manifolds inR3 [457,Hass &
Hughes,1985,Topology]. Several bordism invariants have been developed ([185,Carter,
1986,Trans. Amer. Math. Soc.] gives a good summary of n-tuple point invariants).

(C) For a surface in R3, a neighborhood of a double curve is an immersed B1 ∨ B1-bundle
over S1. In general a k-tuple set will have an immersed Bn∨ k. . . ∨Bn-bundle. Does the
multiple point set with this structure determine the bordism class of the immersion?

Remarks: Yes for 2-manifolds in R3. The codimension one case is investigated in
[265,Eccles,1980,Math. Proc. Cambridge Philos. Soc.] and [J. S. Carter, ibid.].

(D) Can one find explicit coordinates for Boy’s surface, i.e. find a smooth function from S2

to R3 taking S2 onto Boy’s surface as a 2-1 cover.

Remarks: Morin & Francis [805,Morton,1978,Topology] have a complicated function
whose image is not the standard Boy’s surface.

(E) The number of quadruple points of an immersed S3 in R4 is a Z/2Z invariant under
regular homotopy. Is it a Z/24Z (= πs3) or even a Z invariant?

Update: (A) The reflection r0 : Sn → Rn+1 is trivial up to regular homotopy iff n = 0, 2, 6.
In particular, the non-trivial element in Imm(S4,R5) = π4(SO(5)) = Z/2Z is realized by r0
[556,Kaiser,1988,Archiv. Math. (Basel)].
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The regular homotopy class of r0 and more generally, the actions of pre- and post-
composition with reflections on Imm(Sn,Rn+k) can be explicitly computed. For k > 1 it is
given by the action of the James automorphisms [540,James,1976] on homotopy groups of
Stiefel manifolds (see [555,Kaiser,1985]). For k = 1, the result can be stated [556,Kaiser,
1988,Archiv. Math. (Basel)] in terms of natural generators of πn(SO(n + 1)). In partic-
ular, the subsets of Imm(Sn,Rn+1) which are generated by r0 under connected sum and
reflection are groups when n 6= 1, 3, 7. All elements are realized this way when n 6≡ 2, 4, 5, 6

(mod 8). For n ≡ 1, 3, 7 (mod 8) and n ≥ 8, the reflection generates an infinite cyclic
direct summand, and for n ≡ 0 (mod 8), a direct summand of order 2.

There are at most two elements in Imm(Sn,Rn+1) which are realized by imbeddings
[Kaiser, ibid.].

The image of πn(SO(n)) in πn(SO(n + 1)) ∼= Imm(Sn,Rn+1) can be realized by using
Hughes’ track construction on regular homotopies of the standard imbedding Sn−1 → Rn.
For n 6= 1, 3, 7, the group of regular homotopy classes is the direct sum of the subgroup
generated by the reflection and track constructions [555,Kaiser,1985].

The action of composition with reflection for immersions Mn → Rn+1 can be completely
determined [556,Kaiser,1988,Archiv. Math. (Basel)] (for some cases, see [649,Li & Peterson,
1985,Kexue Tongbao (Chinese)]). The action is discussed for Mn → R2n−2 in [557,Kaiser &
Li,1991,Acta Math. Sci. (English Ed.)].

Hughes & Melvin [518,1985,Comment. Math. Helv.] determine which classes in Imm(Sn,Rn+2)
contain representatives which are imbeddings.

(B) If the bordism class contains an algebraic representative (an immersion given by
polynomial components), then any immersion can be ε-isotoped to an algebraic immersion
[26,Akbulut & King,1992,Topology].

(C) No information.

(D) Apéry [42,1986,Adv. Math.] has given a parametrization of Boy’s surface in R3

by three degree four polynomials, and also Boy’s surface as the zero set of a polynomial of
degree six in three variables (both degrees are minimal). Color pictures can be found in [43,
Apéry,1987].

(E) No information.

Problem 4.62 (A) Do the cyclic branched covers of 2-spheres in S4 imbed in S5?

(B) Does every mapping torus of a 3-manifold imbed in S5?
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Remarks: If a knot K is doubly null concordant (the slice of an unknotted S3 in S5) then
all of its cyclic branched covers imbed in S5, so (A) concerns an obstruction to K being
doubly null-concordant.

Update: No progress.

Problem 4.63 (A) Find a smooth, closed, spin, signature zero 4-manifold X4 which does
not imbed punctured in S5.

(B) Find an X4 such that X#kS2 × S2 imbeds smoothly in S5 but X does not.

Remarks: X smoothly imbeds in S5 if its fundamental group is simple enough, e.g.
H1(X;Z) is the direct sum of no more than two cyclic groups [209,Cochran,1984b,Topol-
ogy]. However there are examples with π1 = Z/pZ ⊕ Z/pZ ⊕ Z/pZ, p odd where X does
not smoothly imbed in S5, does not imbed stably (#k(S2 × S2)), and sometimes is known
to imbed punctured [208,Cochran,1984a,Invent. Math.].

Update: No progress.

Problem 4.64 (A) What 4-manifolds have a symplectic structure?

Remarks: A symplectic structure is given by a 2-form Ω with dΩ = 0 for which Ω∧Ω
is a volume form. Thus it is necessary that H2(M4;R) contain an element Ω with
Ω ∧ Ω 6= 0.

(B) Does every contact structure on a 3-manifold M3 extend to symplectic structure on a
bounding 4-manifold?

Remarks: A contact structure is a 1-form α such that α ∧ dα is nowhere zero. We
would require that α(v) = Ω(v, n) for n an outward pointing normal to M3 = ∂W 4

and v ∈ TM .

Update:

(A) All finitely presented groups are represented as fundamental groups of symplectic 4-
manifolds [396,Gompf,1995]. These and other examples of Gompf provide many ex-
amples of 4-manifolds heretofore not known to have symplectic structures.

(B) A contact structure on M is a field of 2-planes in TM which is nowhere integrable; it
forms the kernel of many 1-forms α which differ by multiplication by smooth functions
f : M → R. So (B) should ask whether a given contact structure has an associated
1-form α such that α(v) = Ω(v, n). This question is still open (see Problem 4.142).
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Problem 4.65 (A) Find a differential geometric invariant which distinguishes the ends of
smooth non-compact 4-manifolds. For example, if X4 is a simply connected topological
manifold with a definite intersection form, then X4-point is smooth but its end is not
standard; can this be detected in a direct differential geometric way?

(B) Find a differential geometric proof of Rohlin’s theorem.

Remarks: There is such a proof using the Â genus, and Taubes has found a nice proof

by getting the quaternions to act on the sequence Ω0(g)
dA−→ Ω1(g)

p−dA−→ Ω2
−(g−) from

Donaldson’s work, but maybe there is a proof more in the spirit of (A).

Update:

(A) No progress.

(B) Nothing new.

Problem 4.66 How do metrics (e.g. Riemannian, Lorentz, constant curvature) behave un-
der standard topological constructions such as connected sum, plumbing, handle addition?
Same question for η-invariants, moduli spaces, etc.

Update: Much has probably been done on this open ended problem, and the editor has not
attempted to update it.

Problem 4.67 (Hopf) Does there exist a metric of strictly positive sectional curvature on
S2 × S2?

Update: The conjecture was probably attributed to Hopf for the first time in writing by
Chern in [199,1971; pages 44–45] and the only known examples of 4-manifolds with strictly
positive sectional curvature are the standard ones: S4, RP4 and CP2.

In 1970, Weinstein [1104,1970,J. Differential Geom.] showed that no such metrics could
be induced by an immersion into R6. Most other results since then have been obtained in
either one of two areas: perturbation of the nonnegative sectional curvature product metric
or restriction on the existence of α-pinched manifolds (sectional curvature Kσ satisfying
0 < α ≤ Kσ ≤ 1, possibly after renormalization).

• Berger [81,1966,C.R. Acad. Sci. Paris Sér. I Math.] showed that no perturbation of
the product metric could have increasing curvature at all planes; that is, if

dKσ

dt
|t=0 ≥ 0 then

dKσ

dt
|t=0 = 0 for all planes σ .
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• Bourguignon, Deschamps & Sentenac [139,Bourguignon,1975], [142,Bourguignon, De-
schamps, & Sentenac,1972,Ann. Sci. École Norm. Sup. (4)], [143,Bourguignon, De-
schamps, & Sentenac,1973,Ann. Sci. École Norm. Sup. (4)] showed that if a product
metric (including products of non-standard metrics) has no infinitesimal isometries
then there are no one-parameter analytic perturbations of this metric with strictly
positive sectional curvature. Observe that in the case of the product of standard met-
rics in S2 (which has infinitesimal isometries) it is possible to obtain a variation of
the metric with increasing sectional curvature on all mixed planes [143,Bourguignon,
Deschamps, & Sentenac,1973,Ann. Sci. École Norm. Sup. (4)], but with no control
over the curvature of non-mixed planes.

• Hsiang & Kleiner [514,1989,J. Differential Geom.] showed that there are no positive
sectional curvature metrics with infinitesimal isometries and Seaman [984,1988,Michi-
gan Math. J.] showed that no such metric could exist with a harmonic 2-form of
constant length.

The Sphere Theorem obtained from compound efforts of Rauch, Berger & Klingenberg (for
a modern exposition see [245,do Carmo,1992; Chap 13], [193,Cheeger & Ebin,1975; Chap 6]
and [587,Klingenberg,1982; Sec. 2.8]) says that if M is complete, simply connected and
pinched by 1

4
then it is homeomorphic to the n-sphere.

• Berger [80,1963,C.R. Acad. Sci. Paris Sér. I Math.] showed that if M4 has an α-
pinched metric with α > 4

17
then M4 has a definite intersection form, ruling out such

metrics for S2 × S2. Later Bourguignon [140,Bourguignon,1981a] rewrote the proof
bringing it down to 4

19
.

• Ville [1076,1989,Ann. Inst. Fourier (Grenoble)] showed that under the above assump-
tions of 4

19
pinched, M is homeomorphic to either S4 or CP2, and Seaman showed that

both Bourguignon and Ville’s result were valid under the assumption of α = 0.1883
[983,Seaman,1987,Ann. Global Anal. Geom.] and [985,Seaman,1989,Geom. Dedi-
cata].

Problem 4.68 (A) There exists an anti-self-dual Einstein metric on the Kummer surface.
Describe it explicitly.

Remarks: Its existence follows from Yau’s proof of the Calabi conjecture [1132,Yau,
1977,Proc. Nat. Acad. Sci. U.S.A.] .

(B) If M4 is compact, closed and has an Einstein metric, then χ(M) ≥ 3
2
|σ(M)| [497,

Hitchin,1974,J. Differential Geom.]. Are there any other topological restrictions?
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(C) Does #pCP2#q(−CP2) have an Einstein metric?

Remarks: If p > 3 and q = 0, then no. If p = 1 then the manifold is complex and a
Kähler–Einstein metric exists only when q ∈ {0, 3, 4, 5, 6, 7, 8}.

An Einstein metric has the property that sectional curvatures are equal on orthogonal
2-planes. A good reference is [141,Bourguignon,1981b,Invent. Math.].

Update:

(A) A good attempt can be found in [554,Joyce,1995].

(B) There are more restrictions, related to the fundamental group via Gromov’s notion of
simplicial volume (see [82,Besse,1987]).

(C) If p = q = 1, then there is an Einstein metric (which is not Kähler) [865,Page,1979,
Phys. Lett. B]. This example is also described in [82,Besse,1987], which also contains
information relevant to (A) and (B).

NEW PROBLEMS

Problem 4.69 (Weinberger) (A) Is every 3-dimensional, ANR, homology manifold sta-
bly resolvable?

(B) Construct 4-dimensional, nonresolvable, ANR homology manifolds.

Remarks: X is called a homology manifold if it is a finite dimensional, locally compact
metric space satisfying H∗(X,X − p) ∼= H∗(Rn,Rn − 0) for all points p ∈ X. An m-
dimensional, ANR, homology manifold X is resolvable if there exists an m-manifold M and
a cell like map f : M → X (cell like means that for every open set U in X, f : f−1(U)→ U
is a proper homotopy equivalence). Stably resolvable means resolvable after crossing with
Rk for some k.

For m ≥ 5, Quinn ([910,1983,Invent. Math.] [912,1987,Michigan Math. J.]) showed that
resolutions are unique, and that they exist if an invariant I(X) ∈ H0(X;Z) vanishes.

Edwards [274,1980] characterized topological m-manifolds, m ≥ 5, as resolvable, ANR,
homology m-manifolds which satisfy the Disjoint Disk Property: for any ε > 0 and any
maps f, g : D2 → X there are maps f ′, g′ : D2 → X with d(f, f ′) < ε, d(g, g′) < ε and
f ′(D2) ∩ g′(D2) = ∅.

Bryant, Ferry, Mio & Weinberger [155,1993,Bull. Amer. Math. Soc.][156,1995] have
shown that there exist nonresolvable, m-dimensional, ANR, homology manifolds X with
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arbitrary index I(X) ≡ 1 (mod 8), for m ≥ 5. Some of these X’s are not even homotopy
equivalent to a closed, topological, m-manifold. It is expected that this phenomena can be
pushed down one dimension (B) but not two dimensions (A).

(C) Are these X’s homogeneous, or are all homogeneous, ANR, homology manifolds actually
manifolds?

Remarks: X is homogeneous if for any two points in X, there is a homeomorphism of X
taking one point to the other.

Problem 4.70 Let f : X → Y be a cellular map between polyhedra and suppose X or Y is
a 4-manifold. Can f be approximated by a homeomorphism?

Remarks: Yes in dimensions 6= 4 [478,Henderson,1981,Topology Appl.].

A subset A of X is said to be cellular in X iff there exists a pseudoisotopy of X shrinking
exactly A to a point (that is, a homotopy gt : X → Y which is a homeomorphism for each
t < 1 and for which g1 has only one non-trivial point inverse, namely A). Then f is cellular
iff all point inverses are cellular.

Problem 4.71 (Freedman) Conjecture: All compact 4-manifolds are Hölder continuous.

Remarks: Non-compact 4-manifolds are smoothable. A function f : U → V is α Hölder
continuous on U if for all x, y ∈ U ,

sup
x 6=y

|f(x)− f(y)|

|x− y|α
<∞.

Hölder continuous means that f is α Hölder continuous for all 0 < α < 1. Then a 4-manifold
is Hölder continuous if its coordinate transformations are Hölder continuous everywhere.
Note that Hölder continuous is not quite Lipschitz (α = 1 Hölder continuous) and not all
4-manifolds are Lipschitz (see Problem 4.44 Update).

The more general conjecture which would prove existence and uniqueness is: any homeo-
morphism between open sets in R4 which is already Hölder continuous on a neighborhood of
a closed set C can be isotoped relative to C to a homeomorphism which is Hölder continuous
on a neighborhood V of a given closed set D, where the isotopy is constant outside V .

Problem 4.72 Does there exist a closed, non-smoothable 4-manifold M4 having a triangu-
lation (necessarily non-combinatorial)?



221

Remarks: Not if M has non-trivial Kirby–Siebenmann invariant (Casson) or an intersec-
tion form which cannot be realized by a closed, smooth 4-manifold (Donaldson). If M is
triangulated, then all links are spheres except perhaps the links of vertices which are only
known to be homotopy spheres. After removing open cones around the vertices, we have
a PL, hence smooth 4-manifold with boundary a disjoint union of homotopy spheres. If
the Kirby–Siebenmann invariant is one, then some boundary component must have Rohlin
invariant one, contradicting Casson’s Theorem [30,Akbulut & McCarthy,1990]. If M has
a non-realizable form, then the form also cannot be realized by a smooth 4-manifold with
homotopy sphere boundary components [1036,Taubes,1987,J. Differential Geom.].

In dimensions ≥ 5, all manifolds are triangulable if there exists an oriented homology 3-
sphere H of Rohlin invariant one such that H#H bounds an acylic 4-manifold (see Problem
4.4).

Problem 4.73 (Ancel) Definition: X is a pseudo-spine of a compact manifold M if X
is a compact subset of intM and M − X is homeomorphic to ∂M × [0, 1). In contrast,
a topological spine X is a compact subset of intM such that M is homeomorphic to the
mapping cylinder of a map from ∂M to X, (see Problem 4.25).

(A) Does the Mazur 4-manifold [724,1961,Ann. of Math.] have disjoint pseudo-spines?
More generally, does every compact contractible n-manifold have disjoint pseudo-spines?

Remarks: This question is motivated by the following question: does the interior of
a compact contractible manifold which is not the ball ever cover a compact manifold?
(If so, then there is a covering translation which moves a pseudo-spine off itself.) D.
Wright [1119,1992,Topology] showed the answer to the latter question is no without
answering (A).

Note that if a compact, contractible, PL manifold M collapses to a subpolyhedron X
in intM , then X is a pseudo-spine of M . If dimM ≥ 5 and dimX ≤ dimM − 3,
then M is a ball (∂M is simply connected by general position, so this follows from the
known Poincaré Conjectures and the Schoenflies Theorem).

Guilbault [421,1995,Topology] has constructed compact, contractible n-manifolds con-
taining disjoint spines, for n ≥ 9, which are not n-balls.

Ancel & Guilbault [34,1995a,Pacific J. Math.] have proved that for n ≥ 5, every com-
pact contractible n-manifold has a wild arc pseudo-spine. Also the Mazur 4-manifold
has a wild arc pseudo-spine.

(B) Does every compact, contractible 4-manifold have an arc pseudo-spine?
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The Mazur 4-manifold has a handlebody decomposition consisting of a single 0-handle,
1-handle and 2-handle. This suggests splitting question (B) into the following two
questions:

(B.1) Does every PL compact contractible 4-manifold have a handlebody decomposition
with no 3- or 4-handles? (compare with Problem 4.18).

(B.2) Does every compact contractible 4-manifold that has a handlebody decomposition
with no 3- or 4- handles have an arc pseudo-spine?

(C) If M4 is a compact 4-manifold which is homotopy equivalent to a compact surface F 2,
does M have a pseudo-spine homeomorphic to F 2?

Remarks: There are interesting examples which support an affirmative answer:

1. the Giffen disk in the Mazur 4-manifold [233,Daverman,1986; pages 103–106];

2. Y. Matsumoto’s example [708,1975,Bull. Amer. Math. Soc.] of a compact 4-
manifold, homotopy equivalent to T 2, with a wild T 2 pseudo-spine but no locally
flat or PL torus spine.

3. Kawauchi’s example [566,1980,Trans. Amer. Math. Soc.] of a locally knotted
PL 2-sphere spine of a compact 4-manifold with no locally flat 2-sphere spine.

Let X(n1, . . . nk) denote the space obtained by attaching k disks to a circle, the ith disk
being attached by a degree ni covering map. Ancel & Guilbault [35,1995b] have generalized
the Giffen disk construction by proving that if a compact 4-manifold M4 is obtained by
attaching k disjoint 2-handles to S1×B3, the ith 2-handle being attached along a curve that
wraps ni times homotopically around the S1 factor (ni 6= 0), then M4 has a pseudo-spine
that is homeomorphic to X(n1 . . . nk).

(D) If a compact 4-manifold M4 is homotopically equivalent to X(n1 . . . nk), ni 6= 0, then
does M4 have a pseudo-spine that is homeomorphic to X(n1 . . . nk)?

Problem 4.74 Is every closed 4-manifold M4 the union of a smooth 4-manifold Y and an
acyclic topological manifold Z, joined along their common homology sphere boundary? Can
acyclic be improved to contractible?

Remarks: If the π1(M) = 0, then the answer is yes: pick any framed link in S1 whose
linking form is the intersection form on H2(M ;Z) and add 2-handles to B4 along the framed
link to get Y 4; then ∂Y is a homology 3-sphere which bounds a topological contractible
4-manifold, Z4.
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Without the assumption that M4 is closed, the answer is no (independently R. Stong,
L. Taylor, and others?). Let K be any Alexander polynomial one knot in S3 which is not
smoothly slice in any acyclic smooth 4-manifold; there are many such K, e.g. the untwisted
double of the trefoil knot (Akbulut) (see also [215,Cochran & Gompf,1988,Topology] and
[960,Rudolph,1993,Bull. Amer. Math. Soc.]). Since K is topologically slice [330,Freedman,
1984] and the slice has a normal bundle [336,Freedman & Quinn,1990; 9.3], it follows that the
complement in B4 is our topological manifold M4 with smooth boundary equal to 0-surgery
on K. For the complement of M4 in S4 can be smoothed (it is just B4 union a 2-handle
attached to K), and if this smoothing extends over all of M but an acyclic piece, Z, then
the acylic piece Z can be replaced by S4−Z, producing an acylic smooth manifold in which
K is smoothly slice.

∗RP4 is a good test case (see Problem 4.82).

It is interesting to note that M is not triangulable; if it is, then it is smooth on the
complement of the vertices in the interior of M , and these can be amalgamated by shrinking
arcs so that M would be smooth in the complement of a contractible set.

Problem 4.75 (A) (Existence) Does every quasiconformal 4-manifold have a smooth
structure?

(B) (Uniqueness) Given smooth 4-manifolds M and N , a homeomorphism h0 : M → N ,
closed sets C ⊂ D ⊂ M and open sets U ⊂ V ⊂ M such that C ⊂ U and D ⊂ V .
Assume h0 is quasiconformal on U . Does there exist an isotopy ht : M → N such that
h1 is quasiconformal in a neighborhood of D, and ht = h0 near C and on N − V ?

Remarks: For C = D = U = V = M , (B) asks whether compatible smooth structures
are unique on a quasiconformal 4-manifold. The more general relative version in (B) implies
(A). Also, see the Update on Problem 4.44.

Problem 4.76 Show that all Casson handles with exactly one kink at each stage are exotic
(in the sense that the attaching circle does not bound a smooth 2-ball in the Casson handle).

Remarks: This is known if all the kinks are positive, or if all are negative [100,Bižaca,1995,
Proc. Amer. Math. Soc.], but for the continuum of Casson handles in between, it is not. A
positive answer would show that all Casson handles are exotic, because every Casson handle
imbeds in one of these.

Problem 4.77 An exotic smooth structure on R4 crossed with R1 is diffeomorphic to R5.
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(A) How can we usefully see the exotic R4 in R5?

The diffeomorphism induces a smooth, non-zero vector field (the image of the tangents to
R1) on R5, whose orbit space is diffeomorphic to the original exotic R4. So an exotic R4 can
be described by 5 differentiable functions of 5 variables (the components of the vector field).

(B) (Arnold) Can the vector field be improved beyond being C∞? Can its components be
analytic? Trigonometric? Polynomial? Can it be written explicitly?

Problem 4.78 Which smooth structures on R4 have compatible Stein structures?

Remarks: A Stein manifold of complex dimension n is a proper, non-singular, analytic
subvariety of CN for some N , e.g. an affine, algebraic manifold over C. Any Stein manifold
has a plurisubharmonic function, which will then be a Morse function with critical points of
index ≤ n, and generic level sets are all strictly pseudo-convex.

In dimensions 2n > 4, an open, smooth, almost complex manifold admits a Stein man-
ifold structure iff it admits a proper Morse function with critical points of index ≤ n [278,
Eliashberg,1990b,Internat. J. Math.], but in dimension 4 this condition is not sufficient. On
the other hand, an affine, algebraic surface which is contractible and 1-connected at infinity
must have the standard C∞-structure [915,Ramanujam,1971,Ann. of Math.].

All exotic R4’s admit complex structures (and even Kähler metrics) since any contractible
4-manifold immerses smoothly in R4 = C2. Gompf has shown that an uncountable family of
exotic R4’s have Stein structures, (note that these all are smooth subsets of S4). Moreover,
Gompf has shown that any 4-manifold with a handlebody decomposition with only 1- and
2-handles has interior homeomorphic to a Stein manifold.

Problem 4.79 (Gompf) (A) Is there a closed 4-manifold covered by an exotic R4?

Remarks: Most exotic R4’s do not cover simply because there are uncountably many
exotic R4’s and only countably many compact 4-manifolds.

(B) Is there a smooth involution on the standard R4, topologically equivalent to Id.×−Id.
on R2 × R2, whose quotient is an exotic R4?

Remarks: The answer is yes if the adjectives (standard, exotic) are replaced by
(standard, standard), or (exotic, standard), or (exotic, exotic); the first case is obvious,
the second is due to Freedman (but see [395,Gompf,1993,J. Differential Geom.] for
this and other examples involving exotic R4’s which do or do not imbed in S4), and
the third could arise from double branch covering an exotic R4 along a smooth R2

imbedded in a neighborhood of a smooth arc running to∞.
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Problem 4.80 (Gompf) Freedman & Taylor [338,1986,J. Differential Geom.] constructed
a universal half space H, that is, a smoothing on 1

2
R4 = {(x1, x2, x3, x4) | x4 ≥ 0} such that

any other smooth 4-manifold homeomorphic to 1
2
R4 smoothly imbeds in H. They prove H

is unique up to diffeomorphism, and that intH = U is a universal smoothing of R4.

(A) Is U unique (as a smoothing of R4 into which all other smoothings of R4 smoothly
imbed) up to diffeomorphism?

Remarks: U has the property that its end-connected-sum with any other exotic R4 is
U , and it is unique in that sense (since any other U ′ with that property would satisfy
U ′ = U ′ end-sum U = U).

There is a relation ≤ on exotic R4’s defined by R ≤ R′ iff any compact submanifold
of R smoothly imbeds in R′. R is said to be compact equivalent to R′ if R ≤ R′ ≤ R,
and ≤ is a partial order on compact equivalence classes.

(B) If R ≤ R′, does it follow that all of R must smoothly imbed in R′?

The class of U is the unique maximal element in this partial ordering, and, assuming
that (B) is true, (A) is equivalent to the class of U contains only U . The unique
minimal element is the class of R4 and it is one of uncountably many classes each of
which has uncountably many elements [395,Gompf,1993,J. Differential Geom.].

(C) Do all compact equivalence classes have uncountably many elements?

Remarks: Obviously (A), (B) and (C) are not all true.

Problem 4.81 (Teichner) Let f : S2 → RP2 → RP2 × B2 be the composition of the
covering map and the inclusion. Is 2f homotopic to a locally flat topological imbedding? A
smooth imbedding?

Remarks: f is homotopic to an immersion with one double point which represents the
generator in the group Z/2Z, so f is not homotopic to an imbedding.

Problem 4.82 (Teichner) Does (∗RP4)#(∗CP2) have a smooth structure?

Remarks: ∗M refers to a manifold of the homotopy type of M but opposite Kirby–
Siebenmann invariant; it does not always exist (for spin 4-manifolds, the Kirby–Siebenmann
invariant is determined by the signature, a homotopy invariant, and in the non-spin case,
Teichner gives examples in [1042,Teichner,1995]), and it is also not necessarily unique if
π1 6= 0 [ibid.]. ∗CP2 was defined by Freedman to be a 0-handle, union a 2-handle added
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to the trefoil knot with framing one, union a contractible 4-manifold. ∗RP4 is constructed
[434,Hambleton, Kreck, & Teichner,1994,Trans. Amer. Math. Soc.] from RP4#E8 by surg-
ering away the extra homology. (∗RP4)#(∗CP2) is a fake manifold, that is, it is homotopy
equivalent to RP4#CP2 but not homeomorphic to it; however after connected summing with
S2 × S2, it is homeomorphic to the standard manifold [ibid.].

Thus (∗RP4)#(∗CP2) has zero Kirby–Siebenmann invariant and may have a smooth
structure. All other non-orientable 4-manifolds with fundamental group equal to Z/2Z have
a smooth structure iff their Kirby–Siebenmann invariants are zero, [ibid.].

A positive answer to the imbedding question in Problem 4.81 implies that ∗RP4# ∗CP2

is smooth. ∗RP4 is a good test case for Problem 4.74 since it is not known whether it is a
smooth 4-manifold union a contractible TOP manifold, as in the case of ∗CP2.

Problem 4.83 (Weinberger) If X4 is a closed 4-manifold and is homotopy equivalent to
a hyperbolic 4-manifold, does X have a smooth structure? Is X then a hyperbolic manifold?

Remarks: In dimension ≥ 5 the answer is yes to both questions, the first in [290,Farrell &
Hsiang,1981a,Ann. of Math.] (also see [302,Ferry & Weinberger,1991,Invent. Math.]), and
the second in [294,Farrell & Jones,1989,J. Amer. Math. Soc.].

The same questions can be asked assuming only thatX4 is a K(π1, 1) (see Problem 5.29).

In dimension 3, Gabai has shown that any closed, orientable 3-manifold M , homotopy
equivalent to a hyperbolic 3-manifold N , is itself hyperbolic if in additionN contains a closed
geodesic in a sufficiently thick hyperbolic tube [360,Gabai,1994b,Bull. Amer. Math. Soc.].

This problem is related to:

Question (Borel Rigidity Conjecture): If Xn is closed and aspherical, then any
homotopy equivalence h : Xn → Y n is homotopic to a homeomorphism (X and Y are
manifolds) (see Problem 5.29).

Problem 4.84 (Teichner) Let M4 and N4 be homotopy equivalent, closed 4-manifolds
with the same Kirby–Siebenmann invariant. We can ask whether they are equivalent in
various senses.

(A) Are M and N homeomorphic? No, and the first examples have fundamental group
Q16 (= ∆∗(2, 2, 4) = 〈x, y | x4 = y2 = (xy)2〉 = binary triangle group) [1041,Teichner,
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1992]. In fact, M and N are not even stably homeomorphic (homeomorphic after
connected sums with copies of S2 × S2). These examples are not spin, so

Question: If M and N are also spin, are they stably homeomorphic, or even homeo-
morphic?

Remarks: In the spin case with Kirby–Siebenmann invariant zero, J. Davis [234,
1994] proves that M and N are stably diffeomorphic (M and N become smooth after
stabilizing) for all fundamental groups for which the Novikov conjecture holds. Kreck
[619,1995] has shown that in the orientable case with zero Kirby–Siebenmann invariant,
then stably homeomorphic implies stably diffeomorphic.

(B) Suppose in addition that M and N are rational homology spheres. An interesting
set of examples are those formed from S × S1 where S is a spherical 3-manifold (a
quotient of S3 by a free linear action of a finite subgroup π of SO(4)); let M be the
result of surgering ∗ × S1 with the product normal framing, and N the result using
the other framing of the normal bundle (note that N can be obtained from M by a
Gluck twist on the surgery 2-sphere). Then Teichner, [ibid.], shows that M ' N iff
the 2-Sylow subgroup of π is cyclic iff M is stably diffeomorphic to N ; furthermore M
is diffeomorphic to N if π is cyclic [879,Plotnick,1986,Trans. Amer. Math. Soc.].

Question: Is M diffeomorphic to N in the case π = ∆∗(2, 2, 2n+1) = 〈x, y | x2n+1 =
y2 = (xy)2〉 (π is not cyclic, but has cyclic 2-Sylow subgroup)?

Remarks: They may be diffeomorphic, but if not, gauge theory is not likely to help
because M#(−CP2) is diffeomorphic to N#(−CP2) since one is a Gluck twist on the
other.

Problem 4.85 (Gompf & Taylor) Are there any exotic smooth structures on closed, ori-
entable 4-manifolds that can be distinguished by classical (non gauge theoretic) invariants?

Remarks: Given a homeomorphism h : M ′ →M , exotic could mean that h is not isotopic
to a diffeomorphism, or it could mean that h is not homotopic to a diffeomorphism, but in
this case it should at least mean that M ′ is not diffeomorphic to M .

In this last sense of exoticity, the answer is yes in the non-orientable case: there exist
exotic RP4’s [181,Cappell & Shaneson,1976,Ann. of Math.], [308,Fintushel & Stern,1981,
Ann. of Math.], as well as exotic S1×̃S3#S2 × S2’s [16,Akbulut,1984], [309,Fintushel &
Stern,1984]; and in the orientable case with boundary [390,Gompf,1986,Math. Ann.].

Scharlemann [965,1976a,Duke Math. J.] gives orientable examples on S1 × S3#S2 ×
S2 which are exotic in the sense that h is not homotopic to a diffeomorphism. Lashof &
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Taylor [639,1984] use Scharlemann’s and Akbulut’s examples to construct smoothings on
any X4#S2× S2 with H3(X;Z/2Z) 6= 0 which are exotic in the sense that h is not isotopic
to a diffeomorphism.

For open 4-manifolds, Freedman gave an exotic S3 × R [328,1979,Ann. of Math.];
more generally, since smoothing theory works for open 4-manifolds, any open X4 with
H3(X4;Z/2Z) 6= 0 has exotic smoothings in the isotopy sense.

All of these examples are predicted by surgery theory and involve Rohlin’s Theorem. The
prototypical examples to find would be exotic S3 × S1’s and S3×̃S1’s.

However it would be most interesting to find (not using gauge theory) an exoticM ′ which
is not predicted by surgery theory.

Problem 4.86 Do all closed, smooth 4-manifolds have more than one smooth structure?
Easier is whether all algebraic surfaces have more than one smooth structure.

Remarks: The first question contains the smooth Poincaré conjecture. A list of algebraic
surfaces with more than one smooth structure is given in [433,Hambleton & Kreck,1990,
Invent. Math.], but it is now far from complete.

Problem 4.87 Does every non-compact, smooth 4-manifold have an uncountable number of
smoothings?

Remarks: Gompf [395,1993,J. Differential Geom.] has shown that for any 4-manifold M ,
M − pt has uncountably many smoothings (also see [242,Ding,1995a], [243,Ding,1995b]).
Of course compact 4-manifolds can have only countably many smoothings because there
exist only countably many smooth, compact 4-manifolds (see [195,Cheeger & Kister,1970,
Topology]).

Problem 4.88 (Poénaru) Define a manifold to be geometrically simply connected if it has
a handle body decomposition without 1-handles. Call it geometrically simply connected at
long distance (GSCLD) if its interior has an exhaustion by compact geometrically simply
connected manifolds.

Let ∆ be a homotopy 3-ball.

Conjecture (Poénaru): If ∆× I is GSCLD, then ∆ × I is geometrically simply con-
nected.
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Remarks: This is a special case of the conjecture that any ∆× I is geometrically simply
connected, which is related to Problem 4.18.

Poénaru had claimed to prove the 3-dimensional Poincaré Conjecture if the above con-
jecture is true; it is a crucial step in Poénaru’s program to prove the Stable PC: Σ× I is
geometrically simply connected where Σ is a homotopy 3-sphere (see [362,Gabai,1995b] and
its references to many preprints and papers by Poénaru) (also see Problem 3.1).

Note that if B is a Schoenflies 4-ball (that is, a component of the complement of a
smoothly imbedded S3 in S4), then int B is diffeomorphic to R4 [723,Mazur,1959,Bull.
Amer. Math. Soc.], [153,Brown,1960,Bull. Amer. Math. Soc.], soB is GSCLD. Proving the
Conjecture for B, instead of ∆× I , would thus establish that B has a handle decomposition
without 1-handles, i.e. the 1/2-Shoenflies Theorem.

Problem 4.89 Smooth Poincaré Conjecture: A smooth homotopy 4-sphere Σ is diffeo-
morphic to S4.

Remarks: Σ is homeomorphic to S4, so the conjecture is that S4 has only one smooth
structure. This problem is a special case of Problem 4.11 which asks whether homotopy
equivalent, simply connected, closed 4-manifolds are homeomorphic, or, implicitly, diffeo-
morphic. Homeomorphism was answered by Freedman, and Donaldson theory has given
many counterexamples to diffeomorphism for sufficiently high second Betti number (see
Problem 4.45). But the Conjecture above remains untouched.

Problem 4.24 concerns one possible source, the Gluck construction, of potential coun-
terexamples to this Conjecture. Another source, potential counterexamples to the Andrews–
Curtis Conjecture (Problem 5.2, D0) (i.e. add 1 and 2-handles to B4 according to any finite
presentation of the trivial group and then double), suggests breaking this Problem into two
parts:

(A) Can every homotopy 4-sphere be described without using 3-handles?

(B) Is the double of a homotopy 4-sphere without 3-handles diffeomorphic to S4?

Remarks: (A) is a special case of Problem 4.18. An affirmative answer to both
(A) and (B) together with the Schoenflies Conjecture (Problem 4.32) would prove
the Conjecture. (B) may be easier to prove than the Andrews–Curtis Conjecture
which implies it. For, given a presentation P of the trivial group (see Problem 5.2 for
examples), one can build a homotopy 4-ball B with one and two-handles corresponding
to the generators and relations.

(C) Can B be constructed so that ∂B = S3? So that B is diffeomorphic to B4?
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Remarks: B × I is a homotopy 5-ball which is standard if the Andrews–Curtis Conjecture
is true for the original presentation P .

The Gluck construction and presentations P give bushel baskets of potential counterex-
amples to the smooth 4-dimensional Poincaré Conjecture.

A corollary of the theorem in the next Problem 4.90 is that an arbitrary homotopy 4-
sphere can be constructed from two smooth imbeddings of some homology 3-sphere Σ into
R4, by taking the union, along Σ, of the bounded complements. (Note that in dimension 3,
such a property is equivalent to the Poincaré conjecture, see Problem 3.1C.)

Problem 4.90 Form a 5-dimensional h-cobordism, W 5, between two contractible 4-manifolds,
which is trivial over the boundary, as follows: choose a link in S3 = ∂B4 consisting of two
components, K0, K1, each being the unknot, which link algebraically once. Add two 2-
handles to B4 along each unknot with framing zero and call the result X4. X4 has two
obvious smoothly imbedded 2-spheres, namely the cores of the 2-handles union the obvious
disks, D0, D1, in B4 which the unknots bound. Starting with X4× I , add a 3-handle to one
2-sphere in X4 × 0 and another 3-handle to the other 2-sphere in X4 × 1. The result is W 5.
The portion of ∂W 5 which is (∂X4) × I is the (obviously trivial) side of the h-cobordism
W ; the bottom and top of the h-cobordism consist of the two contractible 4-manifolds, ∂0W
and ∂1W , made by adding a 2-handle to B4 along K1 (resp. K0) and excising a thickened
D0 (resp. D1) from B4 (or equivalently putting a dot on K0 (resp. K1) in the language of
the framed link calculus [578,Kirby,1989]).

(A) Under what conditions on K0 ∪ K1 is W a product h-cobordism relative to the given
product structure on the boundary?

Remarks: The construction above is a modest generalization of the h-cobordism W ,
using the link drawn in Figure 4.16.1, which was shown to be nontrivial by Akbulut
[21,1991c,J. Differential Geom.]. (A suitable name for suchW (and its generalizations)
would be Akbulut’s corks, for all non-trivial h-cobordisms are formed by pulling out
one of Akbulut’s corks and putting it back in with a twist, as remarked in the Theorem
below.) A possible answer to (A) is that W is trivial iff K0 ∪K1 is concordant to the
Hopf link (two unknots which link geometrically once).

The above construction has an obvious generalization: let L0 and L1 be two unlinks of
n components each, and suppose that the linking number of the ith component of L0 with
the jth component of L1 is δij. Form an h-cobordism W 5 as above, by adding 2-handles to
each component with framing zero, obtaining X4, and then adding 3-handles to n 2-spheres
in X4 × 0 and 3-handles to the other n 2-spheres in S4 × 1.
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(B) Same question: under what conditions on L0 ∪ L1 does the product structure on the
sides of W 5 extend to a product structure on W 5?

Remarks: The h-cobordisms W 5 are special cases of the h-cobordisms which appear
in the following theorem of Curtis & Hsiang:

Theorem: Let V 5 be a smooth h-cobordism between two simply connected closed 4-
manifolds, M0 andM1. Then there is a contractible sub−h-cobordismW 5 whose complement
V − intW is smoothly a product (M0 − int∂0W )× I .

A greatly simplified proof was found by Freedman & Stong (and appears in [232,Curtis,
Freedman, Hsiang, & Stong,1996,Invent. Math.]) and other versions were independently
found by Bižaca and Matveyev. There are also three addenda: W can be chosen so that,

(1) V −W can be taken to be simply connected, and, in fact, to be made with no 3- and
4-handles [Curtis, Freedman, Hsiang & Stong, ibid.];

(2) W 5 is diffeomorphic to B5 (Bižaca, Kirby);

(3) ∂0W is diffeomorphic to ∂1W (but not rel boundary) [721,Matveyev,1995].

From (3), we see that M1 is obtained from M0 by cutting out a contractible manifold,
∂0W , and sewing it back in by a non-trivial diffeomorphism.

The following sketch (see [579,Kirby,1996]) of a proof of the theorem will make clear the
connection between the h-cobordisms W 5 in parts (A) and (B) and the Theorem.

Sketch: V has a handlebody decomposition (starting with M0) with no 0-, 1- 4- or
5-handles, and we will assume for simplicity that there is only one 2- and one 3-handle. The
cocore and core of these handles will intersect a middle level, say M , in a pair of 2-spheres,
S0 and S1, where S0 ∩ S1 = p1 · · · pm and the algebraic sum of the points is 1. A regular
neighborhood in M of the 2-spheres can be built with a 0-, some 1-, and two 2-handles
(called h0, h1). Extend this handlebody structure to all of M . Since M is 1-connected, it
is possible to slide 2-handles (after adding cancelling 2-3-handles pairs to avoid Andrews–
Curtis problems) while avoiding h0, h1, so as to get a contractible 4-manifold U containing
the 0-handle and all the 1-handles, and just enough 2-handles (to kill π1) but not h0, h1.
Now add h0 and h1 to U , and then add the original 3-handle along S1 on one side of U
(thickened), and the original 2-handle, now a 3-handle, along S0 to the other side of U ; this
forms W . It is clear that the complement of W is a product bordism for it has no critical
points; furthermore, W is contractible because h0 and h1 are geometrically cancelled by the
two 3-handles (in fact, since U × I = B5 (no Andrews–Curtis problems), W is also B5).
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Thus, an arbitrary h-cobordism produces a W which is only more general than the W in
(B) in that 2- and 3-handles are added to U rather than B4.

(C) Can U always be chosen to be B4 so that (B) is the general case? In other words,
in the construction in the sketch, can 2-handles be slid so that all the 1-handles are
geometrically cancelled?

Problem 4.91 (Shkolnikov) Suppose that M4 is closed, has no 1 or 3− handles and its
signature is zero. Does it follow that M is diffeomorphic to #k(S2 × S2)#l(S2×̃S2)?

Remarks: The conclusion does not follow from just assuming that M is simply connected
and σ(M) = 0. The Moishezon–Teicher examples ([778,Moishezon & Teicher,1987,Invent.
Math.] and see Problem 4.39) have σ = 0 and are spin (Kotschick), so are homeomorphic to
the connected sum above, but are not diffeomorphic because they have non-zero Donaldson
invariants [251,1990,Topology]. These examples have huge second betti number and their
handle structure is completely unknown. The non-spin case is similar and examples are older
and easier [197,Chen,1987,Math. Ann.].

Problem 4.92 (11/8–Conjecture) Given a smooth, closed, spin 4-manifold, X4, with
H1(X4;Z) = 0, then β2/|σ| ≥ 11/8.

Remarks: The intersection form is 2kE8 ⊕m(0
1

1
0
), so this conjecture can be rephrased as

m ≥ 3k. 11/8 is realized by theK3 surface because rankH2(K3;Z) = 22 and σ(K3) = 16. It
is known that for signature 16, β2 cannot be less than 22 [248,Donaldson,1986,J. Differential
Geom.].

Connected sums of copies of K3 give examples with signature equal to a multiple of 16,
and the question is whether β2 can be lower than in these examples. All complex surfaces
satisfy the conjecture. This is all that remains of the question of what forms are realized by
closed, simply connected, smooth 4-manifolds (see Update, Problem 4.1).

Recently, Furuta [352,1995] has claimed that β2/|σ| > 10/8.

Problem 4.93 (3/2–Conjecture) Given an irreducible, simply connected, closed, smooth,
spin 4-manifold X4, then χ(X)/|σ(X)| ≥ 3/2.

Remarks: The form is 2kE8 ⊕m(0
1

1
0
), so the conjecture can be rephrased as m ≥ 4k − 1.

3/2 is realized by the K3 surface. Irreducibility is necessary because χ(K3#K3) = 46
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and |σ(K3#K3)| = 32. Perhaps one can relax the simply connected condition to just
H1(X;Z) = 0. This conjecture (for H1 = 0) implies the 11/8–Conjecture (for H1 = 0).
Possible counterexamples of Akbulut and Gompf can be found in the Remarks to Problem
4.97.

Problem 4.94 (Mikhalkin) Is it possible to find closed, smooth, (simply connected would
be nice) 4-manifolds X, not of the form M4#± kCP2, so that the fraction b2(X)/|σ(X)| is
arbitrarily close to 1?

Remarks: This is easy to do in the topological case by choosing X to be simply connected
and to represent arbitrarily large, non-trivial, definite, intersection forms. Exotic smooth
structures on CP2#9(−CP2) (see Problem 4.11) give 5/4, but note that Furuta has shown
that 5/4 cannot be achieved by a spin manifold (see Problem 4.92).

The general geography question is: which pairs (b2(X), σ(X)) are realized by irreducible
X?

Problem 4.95 (Akbulut) Does Rohlin’s Theorem still hold for smooth, spin 4-manifolds
with simply connected periodic ends? More specifically, suppose X4 is spin, σ(X4) ≡ 8 mod
16, and ∂X4 is a homology 3-sphere. Can there be a simply connected, homology bordismW
with ∂W = ∂X ∪ −∂X, so that X4 union {countably many copies of W} would contradict
an extended Rohlin’s Theorem for periodic ends?

Remarks: Taubes [1036,1987,J. Differential Geom.] shows that Rohlin’s Theorem holds if
the 4-manifold has a definite intersection form. If the extended Rohlin’s Theorem does hold,
then an exotic smooth homotopy S1 × S3 cannot have a smooth, imbedded cross-sectional,
homology 3-sphere M3 with Rohlin invariant 1 (Taubes [ibid.] shows that such anM3 cannot
bound a definite smooth 4-manifold).

Problem 4.96 We will say that an intersection form is of type (1, n) if it is equivalent (over
R) to 〈1〉 ⊕ n〈−1〉.

Are there any smooth, closed, irreducible, simply connected 4-manifolds of type (1, n)
other that CP2, S2 × S2, the Barlow surface of type (1, 8), the Dolgachev surfaces of type
(1, 9), or blowups of any of these?

If so, are any of them algebraic surfaces?

Remarks: There are no other algebraic surfaces which are diffeomorphic to any of the above
list [346,Friedman & Qin,1995,Invent. Math.]. The Barlow surface is not diffeomorphic to
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CP2# − 8CP2 [605,Kotschick,1989,Invent. Math.]; furthermore, no blowup of the Barlow
surface is diffeomorphic to a blowup of CP2 [612,Kotschick,1995b,C.R. Acad. Sci. Paris Sér.
I Math.] There are infinitely many Dolgachev surfaces (see Update to Problem 4.11).

Problem 4.97 (A) Conjecture: Every irreducible, smooth, closed, simply connected 4-
manifold X4 except S4 has an almost complex structure.

Remarks: An oriented X4 has an almost complex structure iff w2(X) lifts to an
integral class c1 ∈ H2(X;Z) satisfying c21 = 2χ(X) + 3σ(X). An indefinite form (or
trivial definite form) has such a c1 iff b+2 is odd (easy exercise using mod 8 arithmetic).
Thus the conjecture is equivalent to:

(B) Conjecture: A smooth, closed, simply connected 4-manifold with even b+2 and even b−2
decomposes as a connected sum (or is S4).

Remarks: Here are two potential counterexamples which appear to be irreducible:

(1) (Akbulut) Σ(2, 3, 13) bounds a smooth, contractible 4-manifold [189,Casson & Harer,
1981,Pacific J. Math.] whose union with the Milnor fiber has intersection form 2E8 ⊕
4(0

1
1
0
) and thus b+2 = 4.

(2) (Gompf) Remove an open tubular neighborhood of a smoothly imbedded S2 in the
K3 surface, with S2 · S2 = −2; the boundary is RP3, so glue together two copies
by an orientation reversing diffeomorphism of RP3. The result is not spin and has
the intersection form ⊕6〈1〉 ⊕ 38〈−1〉, and if irreducible, would also violate the 3/2–
Conjecture (Problem 4.93).

Problem 4.98 (Gompf) Does every simply connected, smooth 4-manifold with b+2 ≥ 3
have a Gompf nucleus?

Remarks: A Gompf nucleus is the 4-manifold described by the framed link in Figure 4.98.1
which should always be homologically essential in the ambient 4-manifold [393,Gompf,1991b,
Topology].
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0

−2

Figure 4.98.1.

This question is also interesting for simpler 4-manifolds, each of which is contained in a
Gompf nucleus:

• a neighborhood of a cusp fiber, or

• a neighborhood of a fishtail fiber, or

• a neighborhood of a torus with self intersection zero.

0

cusp fiber

0

fishtail fiber

A detailed description of singular fibers and their neighborhoods in an elliptic surface
can be found in [444,Harer, Kas, & Kirby,1986].

Problem 4.99 (Yau) Classify smooth, oriented, 4-manifolds X4 with boundary which have
a projection to B2 which is a surface bundle over B2 − 0 and whose fiber over 0 consists of
smooth imbedded surfaces in X4 with normal crossings.

Remarks: It may be easier to first solve the classification problem if blowing up (only with
−CP2) is allowed.
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The next step would be to understand how to glue the pieces together to get a closed
4-manifold with a singular fibration over a closed surface. Hopefully, the Seiberg–Witten
invariants and the Miyaoka–Yau inequality will come into the gluing argument (and perhaps
there are local invariants in the above local setting also). Jost & Yau [553,1993,Amer. J.
Math.] have shown that if X4 π

→ F 2 is a smooth map with finitely many singular fibers
and X4 is Kähler, then π is homotopic to a holomorphic projection with some conformal
structure over F 2.

The classification in terms of the topological monodromy around the singular fiber has
been carried out by Matsumoto & Montesinos [715,1994,Bull. Amer. Math. Soc.] [716,
1995] under the assumption that all the normal crossings are positive and each crossing has
local coordinates (z1, z2) such that the projection is (z1, z2)→ zm1 z

n
2 , where m and n are the

multiplicities of the irreducible components which meet at the crossing.

Problem 4.100 (Y. Matsumoto) A C∞-Lefschetz fibration of fiber genus g over a sur-
face F is determined up to C∞-isomorphism by the conjugacy class of the monodromy
representation

ρ : π1(F − {p1, p2, · · · , ps})→ Γg,

where {p1, · · · , ps} is the set of singular loci, and Γg is the mapping class group of genus g.
In what follows, F will be S2 and in this case, the monodromy representation is described by
the s−tuple of elements of Γg , ρ(p1), ρ(p2), · · · , ρ(ps), each of which is a right handed Dehn
twist about a simple closed curve on the general fiber. This satisfies ρ(p1)ρ(p2) · · · ρ(ps) = 1.
Conversely if the latter relation is satisfied, then we obtain a C∞-Lefschetz fibration of fiber
genus g over S2. (Here we use the same notation pi for the small loop around the point pi.)

The mapping class group of genus 2, Γ2, is generated by the 5 generators ζ1, ζ2, · · · , ζ5,
which are represented by full right-handed Dehn twists about canonical curves, (see [90,
Birman,1974; page 184]). We have the following relations

(ζ1ζ2ζ3ζ4ζ5
2ζ4ζ3ζ2ζ1)

4 = 1

(ζ1ζ2ζ3ζ4)
10 = 1.

The first relation is an immediate consequence of the relations in Birman’s book, and the sec-
ond one is algebraically derived from them. These two relations correspond toC∞−Lefschetz
fibrations M1 → S2 and M2 → S2 of fiber genus two, respectively. The total spaces M1

and M2 are simply connected 4-manifolds. They have the same signature, -24, and Euler
number, 36, and therefore [329,Freedman,1982,J. Differential Geom.] are homeomorphic to
5CP2#29(−CP2). However, they are not C∞-isomorphic as Lefschetz fibrations, because the
monodromy representation of M1 → S2 is onto while that of M2 → S2 is not.

Question: Are M1, M2, and 5CP2#29(−CP2) mutually diffeomorphic? (Probably not.)
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Remarks: If M1 and M2 have complex structures, then they are not diffeomorphic to
5CP2#29(−CP2) by [248,Donaldson,1986,J. Differential Geom.].

The Lefschetz fibrations corresponding to the familiar relations

(ζ1ζ2ζ3ζ4ζ5
2ζ4ζ3ζ2ζ1)

2 = 1

(ζ1ζ2ζ3ζ4ζ5)
6 = 1

have total spaces CP2#13(−CP2), and K3#2(−CP2), respectively.

Problem 4.101 (Stern) For fixed odd r > 1, the following pairsH(r) andH ′(r) of complex
algebraic surfaces of general type are homotopy equivalent but deformation inequivalent.
They cannot be distinguished by their Seiberg–Witten invariants; D. Gomprecht, Fintushel
& Stern and Morgan & Szabó have shown they also have the same Donaldson polynomials.

(A) Question: Are H(r) and H ′(r) diffeomorphic?

Remarks: These are known as the Horikawa surfaces [503,Horikawa,1976a,Ann. of
Math.], [504,Horikawa,1976b,Invent. Math.], [505,Horikawa,1978,Invent. Math.], [506,
Horikawa,1979,Invent. Math.], and they are double branched covers of S2 × S2 which
is identified as F2r, the simply connected ruled surface with sections s± with self-
intersection ±2r and with fiber f . Let H(r) be the double cover of F0 branched over
a smoothing of 6s+ + 4rf and let H ′(r) be the double cover of F2r branched over a
disconnected branch locus which is a smoothing of 5s+ + s−. These are surfaces with
c21 = 8r − 8 and c2 = 40r − 4 and Horikawa has shown [ibid.] that they are deforma-
tion inequivalent. If r is even these surfaces can be distinguished by the type of their
intersection form. However, if r is odd, both these surfaces have odd intersection form
and hence are homotopy equivalent.

Note that a yes answer to (A) provides a counterexample to the Conjecture in Problem
4.134 which states that diffeomorphic complex surfaces are deformation equivalent.

(B) Question: Are there restrictions on self-diffeomorphisms f of a minimal Kähler surface
X (of nonnegative Kodaira dimension) with canonical class KX beyond the conditions
f∗KX = ±KX?

Remarks: For example, consider the surface X which is the double cover of S2 × S2

along a branch locus which represents |2af1 + 2bf2|, where the fi are the fibers of
the two different projections and a, b are positive integers with a 6= b. Is it true that
for general a and b every orientation-preserving self-diffeomorphism of X preserves the
pullbacks toX of f1 and f2 up to sign and not just KX (which is a positive combination
of the pullbacks)? Even for simply connected elliptic surfaces there is a gap of finite
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index between those isometries of H2(X;Z) known to arise from self-diffeomorphisms
and the restrictions placed on such isometries by Donaldson theory or Seiberg–Witten
theory (namely, that they preserve the homology orientation of the manifold). So the
problem is to construct more diffeomorphisms for these double branched covers or to
construct new invariants which rule out the existence of such diffeomorphisms.

Problem 4.102 (Yau) Conjecture: The minimal, complex surfaces which are not Kähler,
are the manifolds of class V II0 as listed by M. Inoue [519,1974,Invent. Math.].

Remarks: A compact complex surface is in the class V IIo if it is minimal and b1 = 1.

The conjecture is true for b2 = 0 [112,Bogomolov,1976,Math. USSR-Izv.], [113,Bogo-
molov,1983,Math. USSR-Izv.], [650,Li, Yau, & Zheng,1990,Illinois J. Math.], [651,Li, Yau,
& Zheng,1994,Comm. Anal. Geom.]. For b2 > 0, see the table in [828,Nakamura,1984,
Invent. Math.; page 439].

Problem 4.103 Suppose X4 is a simply connected, algebraic surface.

(A) Is X4#CP2 diffeomorphic to a connected sum of copies of CP2 and −CP2?

Remarks: Yes for X4 elliptic or a complete intersection [691,Mandelbaum & Moishe-
zon,1976,Topology].

(B) If X4 is also spin, is X4#S2 × S2 diffeomorphic to a connected sum of copies of K3
and S2 × S2?

Remarks: Yes for X4 elliptic [690,Mandelbaum,1979], (see also [394,Gompf,1991c,J.
Differential Geom.]).

(C) If X and Y are simply connected algebraic surfaces (or symplectic 4-manifolds) other
than CP2, does X#−Y decompose as in (A) for the non-spin case, or (B) for the spin
case?

Remarks: Yes, for elliptic surfaces [Gompf, ibid.] and for arbitrary algebraic surfaces
provided one is non-spin and neither is general type other than a complete intersection
[391,Gompf,1988,Invent. Math.].

(D) How about X#Y ?

Remarks: Nothing is known here for irrational surfaces.
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Problem 4.104 (Mikhalkin) LetX4 be a simply connected, closed, symplectic 4-manifold,
and let τ : X → X be an anti-symplectic (τ (ω) = −ω) involution with a smooth, non-empty,
imbedded surface as fixed point set.

Question: Is X/τ completely decomposable, i.e. is

X/τ = #rCP2#s(−CP2) or #n(S2 × S2)?

Remarks: This mimics the case of conjugation of complex algebraic surfaces, with F ix(τ ) a
real algebraic surface, in whichX/τ is completely decomposable for many cases [22,Akbulut,
1994,J. Reine Angew. Math.], (Finashin).

Note that when τ is free, then X irreducible implies that X/τ is also irreducible; if in
addition X is complex algebraic, then the Seiberg–Witten invariants of X/τ are zero [1097,
Wang,1995,Math. Res. Lett.]. If τ is not free, then the Seiberg–Witten invariants of X/τ
still vanish if the fixed point set of τ contains an orientable component of genus > 1 (because
of the adjunction formula) and in some other cases (Mikhalkin).

Problem 4.105 (A) Given an arbitrary smooth 4-manifold, X4, is the self-intersection of
a smoothly imbedded S2 bounded below by a constant which depends only on X4?

Remarks: There is an upper bound of −2 for those X4 (with no −CP2 summands)
which have non-zero Donaldson or Seiberg–Witten invariants because of the vanishing
theorems for those invariants.

In the simply-connected topological case, Freedman [329,1982,J. Differential Geom.]
proved that any primitive, non-characteristic class with an even dual is represented by
a locally flat imbedded 2-sphere, so there is (assuming b−2 > 1) no lower bound.

(B) What is the smoothly imbedded 2-sphere with minimal (most negative) self intersection
in the −E8 plumbing?

Remarks: One gets −30 by taking the connected sum of the eight cores of the plumb-
ing, where the connected sum (with appropriate orientations) takes place at the inter-
section points.

(C) Same question for the plumbing of only two 2-spheres, each with self intersection −2.
Can one improve on −6?

(D) Same question for the K3 surface.

Remarks: It has a smoothly imbedded S2 with self-intersection −66 (Ruberman con-
structs it by starting with the configuration on page 185 of [68,Barth, Peters, & de Ven,
1984], removing one curve, e.g. E1, and taking the connected sum (with alternating
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signs) of the rest). Recently, Mikhalkin has constructed one with self intersection−82.
In fact, it appears in [19,Akbulut,1991a,J. Differential Geom.; Figure 33] where one can
see a tree of 21 2-spheres with self intersection −2 which can be connected summed
together; the manifold in Figure 33 was only known to be a homotopy K3, but Gompf
verified that it is diffeomorphic to K3.

Problem 4.106 Does there exist a simply connected, algebraic surface having elements α ∈
H2(X;Z) such that α · α = −2, but no smoothly imbedded 2-sphere representing any such
class?

Remarks: Without the simply connected assumption, there are algebraic surfaces which
are K(π, 1)’s and have no essential 2-spheres whatsoever. For example, surfaces of general
type with c21 = 3c2 are quotients of the complex hyperbolic ball [1133,Yau,1978,Comm.
Pure Appl. Math.]. (The complex hyperbolic ball is {z ∈ C3 | ‖z‖ = −1}/S1 where
‖z‖2 = −|z0|2 + |z1|2 + |z2|2.)

Problem 4.107 (Catanese) Does there exist an algebraic surface for which inf (C · C) =
−∞ where the infimum is taken over all irreducible, complex curves C?

Problem 4.108 (Ruberman) Does every smooth, closed, simply connected 4-manifold con-
tain a configuration of 2-spheres such that the complement is a K(π, 1)?

Remarks: A configuration is just a collection of smoothly imbedded 2-spheres which in-
tersect each other transversally. Rational surfaces have such configurations, as do double
coverings of, for example, CP1 × CP1 branched along unions of generators ({x} × CP1 and
CP1 × {x}) with singularities resolved to get non-singular surfaces (this construction gives
configurations in K3 and the Enriques surface) (Kharlamov).

Problem 4.109 Let X be a simply connected 4-manifold and Σ an imbedded surface. If Σ·Σ
is non-zero and is square free (all prime divisors appear once), does it follow that π1(X−Σ)
is trivial?

Remarks: Under the assumption, π1(X − Σ) will have no non-trivial representations in
SO(3).

Problem 4.110 In CP2, let F 2 (smoothly imbedded) represent α ∈ H2(CP2;Z) = Z, sup-
pose genus(F ) is minimal and suppose that π1(CP2 − F ) = Z/αZ.

Question: Is F smoothly isotopic to an algebraic curve?
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Remarks: For α = 1, this is the old Problem 4.23, which is still open. The topological case
is also open.

Problem 4.111 (Eliashberg) (A) Is there a Lagrangian imbedding of the Klein bottle K
in R4?

(B) Is there a knotted Lagrangian imbedding of the torus T 2 in R4?

Remarks: The usual symplectic form on R4 is ω = 1/2(dx1 ∧ dx2 + dx3 ∧ dx4), and an
imbedding of a surface F is Lagrangian if ω = 0 on each tangent plane in TF . It follows
from [1111,Whitney,1941] that an orientable F cannot be imbedded as a Lagrangian unless
genus(F ) = 1. The Lagrangian imbedding of T 2 is provided by the product of two circles in
the (x1, x2) and (x3, x4)-coordinate planes.

RP2 cannot be imbedded as a Lagrangian, but K#nT 2 can be if n > 0 [887,Polterovich,
1991,Geom. Funct. Anal.]. To get Lagrangian imbeddings of non-orientable surfaces, one
can first deform the imbedding of the T 2 into a Lagrangian immersion with 2n intersection
points and then surger away the intersection points; positive intersection points contribute
orientable handles while negative intersection points contribute non-orientable ones.

One can also ask for the classification of Lagrangian imbeddings up to Lagrangian, or
even Hamiltonian, isotopy. See [282,Eliashberg & Polterovich,1995] for further discussion of
this problem.

Problem 4.112 (Taylor) Let M4 be an orientable 4-manifold.

(A) Is there an imbedded (locally flat) surface F , dual to w2(M), such that H1(F ;Z/2Z)→
H1(M ;Z/2Z) is the zero map?

(B) Given x ∈ H2(M ;Z/2Z), x dual to w2(M), then for which covers of M , π : M̃ → M ,
does there exist y ∈ H2(M̃ ;Z/2Z) such that π∗(y) = x? In particular

(B′) does y exist for the universal cover of M?

(B′′) does y exist for the cover corresponding to the kernel of π1(M)→ H1(M ;Z/2Z)?

Remarks: The answer to (A) is yes iff the answer to (B′′) is yes (Taylor). (B′), hence (A), is
known for π1(M) abelian or free; only the 2-Sylow subgroup of π1(M) matters when π1(M)
is finite. (B′) is not true in general, but (B′′) may be.
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A motivation for (A) is that older definitions of quadratic enhancements on H1(F ;Z/2Z)
depended on each element α ∈ H1(F ;Z/2Z) being represented by a loop in F which bounded
a surface in M4, e.g. [712,Matsumoto,1986], but later definitions [586,Kirby & Taylor,1990]
did not need this condition; thus, were the later definitions more general, or is the answer
to (A) yes?

Problem 4.113 (A) (Montesinos) Is every closed, smooth, orientable 4-manifold X4 an
irregular, simple, 4-fold cover of S4, branched along a closed surface in S4?

Remarks: This is true for 4-manifolds made with 0-, 1-, and 2-handles [779,Mon-
tesinos,1978,Trans. Amer. Math. Soc.], so one can split a closed 4-manifold along
the boundary of the 3- and 4-handles, realize both sides as irregular covers, and then
worry about classifying such irregular covers of #n(S1 × S2), [780,Montesinos,1985].
Recently, Piergallini [875,1995,Topology] has classified such covers and has shown that
every X4 is such a cover, but over an immersed surface with only transverse double
points.

(B) (Akbulut) Is every simply connected 4-manifold X4 a cyclic branched cover of S4, or
#r(CP2)#s(−CP2), or #n(S2 × S2), branched over a smooth imbedded surface?

Remarks: CP2 is the branched cover of S4 along RP2 [629,Kuiper,1974,Math. Ann.],
and many complex surfaces arise this way (see [28,Akbulut & Kirby,1980,Math. Ann.]
for constructions).

(C) (Akbulut) Does every irreducible, simply connected, closed, smooth 4-manifold X4

have a branched cover which is a symplectic manifold.

Problem 4.114 Conjecture: Let M3 be a homology 3-sphere which does not bound a
smooth, contractible 4-manifold; then for any homology 3-sphere N3, M#N also does not
bound a smooth, contractible 4-manifold.

Remarks: Although M#(−M) bounds an acyclic 4-manifold, M×I , it is sometimes known
not to bound a smooth, contractible 4-manifold (see Update to Problem 4.49).

Problem 4.115 Is there a theory for smooth 4-manifolds which is analogous to splitting
3-manifolds along 2-spheres (to get irreducible 3-manifolds) and characteristic tori (to get
pieces which are atoroidal and, conjecturally, geometric)?

Remarks: A 4-manifold X4 is currently said to be irreducible if any smoothly imbedded S3

bounds a contractible 4-manifold inX; this avoids difficulties with the Schoenflies Conjecture
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Figure 4.115.1.

(Problem 4.32). But it is not clear what should replace tori in dimension 4. It is plausible to
decompose along S1 bundles over surfaces which do not bound B2 bundles. But the following
example of Fukaya and Y. Matsumoto shows the difficulties with that suggestion.

S4 can be split into two copies of a neighborhood N of a fishtail fiber (a 2-sphere with one
point of self intersection), where the splitting 3-manifold ∂N is the S1 bundle over T 2 with
Euler class 1. Describe N by the Whitehead link with one component denoting a 1-handle
(put a dot on it) and the other denoting a 2-handle attached with framing zero. The double
of N is not S4, but if one glues instead by the diffeomorphism of ∂N which interchanges the
components of the Whitehead link, then S4 is obtained. To see that ∂N is the S1 bundle over
T 2, observe that N can be described by adding a 2-handle with framing −1 to T 2 × B2 (as
in Figure 4.115.1 (a)), but ∂N could equally well be described by Figure 4.115.1 (b) where
we have just added the 2-handle to a different factor of S1 × S1 × S1 = T 3 = ∂(T 2 × B2),
and then blowing down the −1 circle gives the Euler class 1 bundle over T 2 (Figure 4.115.1
(c)).

This example can also be described as follows: suspend the Hopf map and compose with
the Hopf map to get S4 → S3 → S2; then all fibers are tori except those over the poles which
are spheres with double points, and the inverse image of the equator is a torus bundle over
S1 with monodromy (0

1
1
0
)which is known to be N . (See [709,Matsumoto,1982a,Proc. Japan

Acad. Ser. A Math. Sci.], [713,Matsumoto,1989,Sugaku Expositions], and more generally
[711,Matsumoto,1984].)

Problem 4.116 (Ruberman) Given a smooth X4, if H2(X;Z) has an orthogonal splitting
then it can be realized by a splitting ofX4 by a homology 3-sphere Σ, that is,X4 = M1

⋃
ΣM2

[337,Freedman & Taylor,1977,Topology].

Find an X and a splitting of H2(X) where Σ cannot be chosen to be a Seifert fibered
3-manifold.
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Remarks: Σ can always be chosen to be hyperbolic [945,Ruberman,1990,Pacific J. Math.].

Problem 4.117 (Stern) Which Σ(p, q, r) imbed in the standard K3 surface?

Conjecture: Only finitely many.

Problem 4.118 (Stern) The lens space L(p2, p−1), p ≥ 2, bounds the smooth 4-manifold
P obtained from plumbing according to the weighted linear graph

s s s s s

−2 −2 −2 −2 −(p+ 2)...

where there are p − 2 nodes with weights −2 and the last node with weight −(p + 2).
L(p2, p − 1) also bounds the rational ball Q which is constructed with one 1-handle and a
2-handle going over the 1-handle p times according to the (−1, p) torus knot.

Define the rational blow down in a smooth 4-manifold as the operation of replacing P by
Q (assuming one can find a configuration of smoothly imbedded 2-spheres as in the above
graph, which can often be done) and a rational blow up as the reverse operation.

Question Can one obtain any simply connected, smooth, closed 4-manifold from E(n)
by a sequence of rational and ordinary blow ups and blow downs?

Remarks: Fintushel & Stern [314,1994a] have formulas for the change in the Donaldson
series under rational blow ups and blow downs. Logarithmic transforms can be achieved by
rational blow ups and downs [ibid.], (the case p = 2 is due to Gompf [396,1995]). It is not
known whether a Gluck twist on a smoothly imbedded S2 can be achieved in this way.

Problem 4.119 Find examples of aspherical 4-manifolds with π1-injective, immersed, 3-
manifolds with infinite fundamental group. Are these common?

Problem 4.120 (Kotschick) For a finitely presentable group Γ, define qCAT (Γ) to be the
minimum Euler characteristic of a closed oriented CAT 4-manifold X4 with π1(X) = Γ.
(Compare Problem 4.59.)
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(A) Is qTOP(Γ) = qDIFF (Γ)?

Let pCAT (Γ) be the minimal of χ(X4)− σ(X4) over CAT 4-manifolds X as above.

(B) Is pTOP (Γ) = pDIFF (Γ)?

Remarks: There are many examples (e.g. free groups or surface groups) of groups Γ
for which equality holds [610,Kotschick,1994].

(C) Is there an integer k = k(Γ1,Γ2) such that for all CAT manifolds X4 as above with
π1(X) = Γ1 ∗ Γ2, the connected sum X#k(S2 × S2) CAT splits as a connected sum
X1#X2 with π1(Xi) = Γi?

Remarks: There is always an l such that X#l(S2×S2) splits [487,Hillman,1995]. The
question is whether there is a universal l that works for all X with given fundamental
group.

There are Γ1, Γ2 for which there exists anX which splits topologically but not smoothly.
There are also examples which do not split topologically [620,Kreck, Lück, & Teichner,
1995].

(D) What can be said about qSymplectic and pSympl?

Problem 4.121 (Weinberger) Let G be a group on Milnor’s list [764,1957a,Amer. J.
Math.] of possible groups which can act on S3. Show that unless G is a subgroup of SO(4),
Z×G is not the fundamental group of any smooth 4-manifold with zero Euler characteristic.

Remarks: Other groups, e.g. the metacyclic groups of order pq, p and q odd primes with
q dividing p − 1, come up in the topological case when n > 4 [435,Hambleton & Madsen,
1986,Canad. J. Math].

Note that there are many topological homotopy S1×L, L a lens space, other than S1×L
itself. In some cases, they are not even of the form S1×(homotopy lens space), which is
relevant because, see the Update to Problem 3.37, it is not yet known whether cyclic groups
can only act linearly on S3. See [1102,Weinberger,1987,Israel J. Math.] for an example of
the failure of Farrell’s fibering theorem based on Casson’s invariant.

The group Q(8, 7, 29, 1) is a good candidate for a counterexample (see the Update to
Problem 3.37); Z × Q(8, 7, 29, 1) is the fundamental group of a topological 4-manifold with
zero-Euler characteristic.

Problem 4.122 (Fukaya) Is there a bundle over S2, with a 4-manifold as fiber, which is
topologically trivial but not smoothly trivial?
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Problem 4.123 (Fintushel & Stern) Does there exist a pseudo-free, smooth, S1 action
on S5 with more than three multiple orbits?

Remarks: An S1 action is pseudo-free if there are no fixed points and the multiple orbits
(orbits of finite isotropy) are isolated. Seifert [986,Seifert,1933,Acta Math.] proved that all
S1 actions on S3 are linear. Montgomery & Yang [782,1972] proved that every homotopy
7-sphere has pseudo-free S1 actions with arbitrarily many multiple orbits, and this was
extended to all S2k−1, k > 4, by Petrie [874,1975].

If there exists a Seifert fibered, homology 3-sphere Σ with more than 3 multiple fibers
which bounds an acyclic 4-manifold W 4 with an epimorphism π1(Σ) → π1(W 4), then the
answer is yes; note that Σ×B2∪W ×S1 = S5 and S1 acts diagonally on Σ×B2 and trivially
on W .

Problem 4.124 (Edmonds) (A) Does the fake CP2 (homotopy equivalent but not home-
omorphic to CP2) admit a topological involution?

(B) Does the K3 surface admit a periodic diffeomorphism acting trivially on homology?

Remarks: The answer to (B) is no for period 2 [946,Ruberman,1995,Proc. Amer. Math.
Soc.], [719,Matumoto,1992]. The question is open for odd period.

Problem 4.125 (A) Which closed, smooth, simply connected 4-manifolds X have big dif-
feomorphism groups with respect to some κ ∈ H2(X;Z)?

Remarks: Let Diffκ(X) be the group of orientation preserving diffeomorphisms f of
X such that f∗(κ) = κ, and let AutκX be the group of automorphisms of H2(X;Z)
which preserves the intersection form and κ. Then X has a big diffeomorphism group
with respect to κ if the image of Diffκ(X) in AutκX has finite index.

Simply connected, minimal elliptic surfaces with pg ≥ 1 have big diffeomorphism groups
with respect to their canonical class [345,Friedman & Morgan,1994].

(B) Here is a possible partial answer to (A). Let κ1, . . . , κl be the basic classes on a smooth,
closed b1 = 0, b+2 ≥ 3, 4-manifold X of simple type, and let H be the subspace of
H2(X;Z) spanned by the basic classes.

Conjecture: The image of DiffH(X) = Diff(X) in AutH(H2(X;Z)) has finite index.

Remarks: The converse is almost true, in that if Diff(X) has finite index in AutH
then the basic classes belong to H. Do they span H? One can work over C and replace
finite index by the condition that Diff(X) is Zariski dense in AutH(H2(X;C)).



247

Problem 4.126 (D. Randall) Let CPL(Mm) denote the PL pseudo-isotopy (concordance)
group for a closed, PL m-manifold M , and let CTOP(Mm) be the corresponding group in the
topological category (this is the space of homeomorphisms of M × I which are the identity
on M × 0). It is known that CPL and CTOP have the same homotopy type for any closed,
connected PL manifold of dimension m ≥ 5 [164,Burghelea & Lashof,1974,Trans. Amer.
Math. Soc.].

(A) Does CPL(M4) have the same homotopy type as CTOP(M4) for every closed, simply-
connected, smooth M4?

Remarks: The map CPL(S4)→ CTOP(S4) is a homotopy equivalence iff TOP (4)/PL(4)
is homotopically equivalent to K(Z/2Z, 3).
For 3-manifolds, the pseudo-isotopy groups need not have the same homotopy type;
for example, CPL(S3) is 3-connected while π2(CTOP(S3)) = Z/2Z [916,Randall &
Schweitzer,1994] .

(B) Conjecture: CPL(S3) is contractible.

Remarks: CPL(S3) is contractible if H∗(CPL(S3);Z) is a finitely generated, graded,
abelian group [Randall & Schweitzer, ibid.].

(C) 4-dim Smale Conjecture: The inclusion

SO(5)→ SDiff(S4)

is a homotopy equivalence.

Remarks: Note that (B) is equivalent to (C) because CPL(S3) ' Ω(PL(4)/O(4)) is
contractible iff Diff(D4, ∂D4) ' Ω5(PL(4)/O(4)) is contractible iff the Smale conjecture
holds, since SDiff(S4) ' SO(5) ×Diff(D4, ∂D4).

The inclusion SO(n + 1) ↪→ SDiff(Sn) is a homotopy equivalence for n = 1 (trivial
proof), n = 2 [1004,Smale,1959,Proc. Amer. Math. Soc.], n = 3 [464,Hatcher,
1983,Ann. of Math.], and is not a homotopy equivalence for n ≥ 5 [41,Antonelli,
Burghelea, & Kahn,1972,Topology] and [164,Burghelea & Lashof,1974,Trans. Amer.
Math. Soc.]. The inclusion SO(n + 1) ↪→ STOP (Sn) is a homotopy equivalence
iff n ≤ 3, while STOP (Sn) does not even admit the weak homotopy type of a finite
complex for each n > 3 (the last statement follows from the fact [Randall & Schweitzer,
ibid.] that π3(STOP (Sn)) contains a copy of Z/2Z for each n > 3 whereas π3 of any
finite, connected, H-space must be free abelian of finite rank ≥ 0).

(D) Conjecture: CTOP(S3) ' K(Z/2Z, 2).
Remarks: Both CPL(S3) is contractible andCTOP(S3) ' K(Z/2Z, 2) iff both PL(4)/O(4)
is contractible and also TOP (4)/PL(4) ' K(Z/2Z, 3).
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Problem 4.127 (Kronheimer) Let X4 be an oriented, closed 4-manifold with non-zero
Donaldson invariants . Define ‖α‖ to be

‖α‖ = 2g − 2− Fg · Fg

where α ∈ H2(X;Z) and Fg is an imbedded surface of minimal genus g which represents α.

Question: Is ‖ ‖ a seminorm on the positive cone in H2?

Remarks: A seminorm, unlike a norm, can be zero on nonzero elements. The main issue
in the question is the triangle inequality: is ‖α + β‖ ≤ ‖α‖ + ‖β‖? If one does not restrict
to the positive cone, the triangle inequality can easily fail. For example, in the K3 surface
there are classes α and β satisfying α ·α = β ·β > 0 and ‖α‖ = ‖β‖ = 0 but ‖α+(−β)‖ > 0
because −(α · β) is too large.

Problem 4.128 (A) Is the Donaldson series for a smooth, closed, simply connected 4-
manifold X4 determined by the following data: the intersection form on H2(X;Z), and
the minimal genera of smoothly imbedded surfaces representing an appropriately chosen
finite set S of elements in H2(X;Z)?

Remarks: WhenX4 is simple (see Problem 4.131), then there are finitely many classes
K1, . . . , Kp ∈ H2(X;Z) and non-zero rationals a1, . . . , ap such that the Donaldson series
is given by

D = exp(
Q

2
)

p∑
s=1

ase
Ks

where Q is the intersection form and the basic classes Ks are all integral lifts of w2(X)
[624,Kronheimer & Mrowka,1994a,Bull. Amer. Math. Soc.], [626,Kronheimer &
Mrowka,1995a,J. Differential Geom.], and [316,Fintushel & Stern,1995a]. If K is a
basic class, so is −K.

The following inequality is also satisfied [Kronheimer & Mrowka, ibid.] where Σ is any
smooth, imbedded, essential surface of genus g in X with Σ · Σ ≥ 0:

2g − 2 ≥ Σ · Σ + |Ks · Σ|.

Are the basic classes characterized as those elements of H2(X;Z) which are lifts of w2

and satisfy the inequality for all classes Σ with Σ · Σ ≥ 0? Is it enough to just use a
finite set of the Σ which includes a basis for H2(X) (we can assume the intersection
form is not negative definite)?
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(Note that there is another version of the inequality for immersed 2-spheres with p
double points of positive sign which holds with no restriction on Σ · Σ [Fintushel &
Stern, ibid.],

2p− 2 ≥ Σ · Σ + |Ks · Σ|.)

(B) Conjecture: Any basic class K satisfies the equality

K ·K = 2χ+ 3σ

Remarks: This equality holds in the known cases ([626,Kronheimer & Mrowka,1995a,
J. Differential Geom.], [314,Fintushel & Stern,1994a], [1012,Stipsicz & Szabó,1994a,
Turkish J. Math.]), e.g. for a simply connected, elliptic surface without multiple fibers,
the basic classes are nF where F is the fiber (F ·F = 0) and |n| ≤ pg−1 and n ≡ pg−1

(mod 2) where pg is the geometric genus.

The basic classes which are defined as those elements of H2(X;Z) which have non-
zero Seiberg–Witten invariants, are conjectured to satisfy this equality (in which case
the manifold is called simple in the Seiberg–Witten sense). Furthermore, the basic
classes of Kronheimer–Mrowka and of Seiberg–Witten are conjectured to coincide for
manifolds which are simple in both senses. Taubes has recently shown [1040,1995c,
Math. Res. Lett.] that the Seiberg–Witten basic classes satisfy the equality if X4 is a
compact, oriented, symplectic 4-manifold.

(C) If X is a minimal, algebraic surface of general type, does the following equality hold:

D = 2c
2
1+3−(1−b1+b+2 )/2exp(

Q

2
)cosh(KX ) for b+2 ≡ 3 (mod 4)

with cosh replaced by sinh if b+2 ≡ 1 (mod 4), where KX is the canonical class?

Remarks: There are examples of such surfaces which are not deformation equivalent,
but do have the same Donaldson series because they are homotopy equivalent by a
homotopy which preserves the canonical class.

(D) Given a class α ∈ H2(X;Z), is there a smoothly imbedded surface Σ of genus g repre-
senting α which satisfies

2g − 2 = α · α+ max
s
|Ks · α|?

Problem 4.129 What is the Donaldson polynomial for CP2?
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Remarks: Kotschick & Lisca [613,1995] calculated all the SO(3)-invariants with non-trivial
w2 up to and including degree 16. In particular, they show that the invariants do not satisfy
the simple type relation D(x2z) = 4D(z) where x is the class of a point.

The SU(2)-invariants have only been evaluated on powers of the hyperplane class (no
point class) up to and including degree 21, using stable bundle calculations by various people.

Problem 4.130 If X4 is irreducible, simply connected, admits an almost complex structure
and satisfies b+2 > 0, does it have non-zero Donaldson invariants? Seiberg–Witten invariants?

Remarks: All Kähler surfaces with b+2 ≥ 3 have non-zero Donaldson invariants ([251,Don-
aldson,1990,Topology] for the 1-connected case, and [787,Morgan & Mrowka,1992,Internat.
Math. Res. Notices, bound within Duke Math. J.] for a simple device to extend to the
non-simply connected case). Some non-Kähler symplectic 4-manifolds are known to have
non-zero Donaldson invariants [397,Gompf & Mrowka,1993,Ann. of Math.], [315,Fintushel
& Stern,1994b,Invent. Math.].

Taubes [1037,1994,Math. Res. Lett.] has shown that if X4 has a symplectic structure
and b+2 ≥ 2, then it has non-zero Seiberg–Witten invariants.

Problem 4.131 (Kronheimer & Mrowka) Do all simply connected, closed, smooth 4-
manifolds with b+2 ≥ 3 have simple type?

Remarks: Simple type means that the Donaldson polynomial qk for a principal SU(2)-
bundle with c2 = k satisfies

qk+1(σ, ν,Σ1, . . . ,Σd) = 4qk(Σ1, . . . ,Σd)

where ν = µ(1) (µ : H0(X;Z)→ H4(Mk+1)), Σi ∈ H2(X;Z), and 2d = dimMk. Manifolds
which have simple type include:

• complete intersections,

• elliptic surfaces,

• any manifold with a Gompf nucleus,

• manifolds with a smoothly imbedded surface F satisfying

2(genus(F ))− 2 = F · F > 0.
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When b+2 = 1, some manifolds, e.g. CP2, S2×S2, CP2#−CP2, do not have simple type.

Problem 4.132 (Kotschick) Conjecture: The parity of Donaldson polynomials is a ho-
motopy invariant; that is, if f : X → Y is a homotopy equivalence, then f∗(qY ) = qX in
Symd(H2(X;Z/2Z)).

Remarks: We assume b+2 ≥ 3, but the conjecture makes sense for the absolute invariants
in the case b+2 = 1. In the definition of the polynomials, the µ-map has to be normalized
to contain no unnecessary powers of 2, for otherwise the conjecture is trivially true. Many
cases have been proved in [939,Ruan,1992,J. Differential Geom.], [313,Fintushel & Stern,
1993,J. Amer. Math. Soc.] and [31,Akbulut, Mrowka, & Ruan,1995,Trans. Amer. Math.
Soc.], [24,Akbulut,1995b], [25,Akbulut,1995c].

Problem 4.133 (Kotschick) (A) Conjecture: There is no orientable, connected and
simply connected, smooth 4-manifold for which Donaldson’s polynomial invariants are
defined and non-zero for both choices of orientation.

Remarks: This refers only to the standard Donaldson polynomials for SO(3) and
SU(2) with b+2 ≥ 3. Conjecture (A) implies:

(B) Conjecture: If two complex algebraic surfaces with finite fundamental groups are ori-
entation reversing diffeomorphic (with respect to their complex orientations), then they
are homeomorphic to a geometrically ruled surface, and in particular are simply con-
nected.

Remarks: Such a surface is a sphere bundle over a sphere. One can ask for diffeo-
morphism instead of homeomorphism.

Both conjectures would follow from the existence of certain imbedded spheres, or from
the ACD property [607,Kotschick,1992b,Math. Ann.] .

Problem 4.134 (Conjecture) If two complex surfaces are diffeomorphic then they are de-
formation equivalent.

Remarks: Two complex structures on a smooth surface are deformation equivalent if their
two J ’s on the underlying tangent bundle are homotopic through integrable J ’s. This is
equivalent to requiring that there be a holomorphic map h : V1 → V2 between two varieties
which has maximal rank off an analytic subvariety of V2 such that the two complex surfaces
are pre-images of regular values.

Note that Problem 4.101 on Horikawa surfaces is a special case of this Problem and offers
a possible counterexample.
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Problem 4.135 (Ruan) The first betti number β1 of a complex surface is even iff the
surface is Kähler (see Update to Problem 4.37). A Kähler form is also a symplectic form. If
two Kähler manifolds are deformation equivalent (see Problem 4.134 for the definition) then
the associated symplectic manifolds are symplectic deformation equivalent.

Question: Is the converse true?

Remarks: Two symplectic structures are deformation equivalent if they belong to the
same connected component of the moduli space of symplectic structures. The moduli space
is constructed from the space of non-degenerate, closed 2-forms by dividing out by the
orientation preserving diffeomorphisms; one gets a moduli space which is a cover of an open
set in H2(X4;R) (see the introduction to [940,Ruan,1993,Geom. Funct. Anal.]). It may be
an infinite cover [733,McDuff,1987,Invent. Math.].

Problem 4.136 (Ruan) Let X and Y be symplectic 4-manifolds with compatible almost
complex structures. Assume that c1(X) = c1(Y ).

Conjecture: X and Y are diffeomorphic iff X × S2 and Y × S2 (with the product
symplectic structure) are symplectic deformation equivalent.

Remarks: Neither implication is known in general. However the conjecture is true if X is
an irrational, minimal surface and Y is a non-minimal surface [941,Ruan,1994,J. Differential
Geom.], or ifX isE(n) with two logarithmic transforms of multiplicities p and q (see Problem
4.11) and Y is the same for p′ and q′ where (p, q) = (p′, q′) = 1 and {p, q} 6= {p′, q′} [942,
Ruan & Tian,1995].

Problem 4.137 (Taubes) A generic, self dual or ASD closed 2-form is a symplectic 2-
form on the complement of a 1-manifold (in X4). For such degenerate symplectic forms,
formulate a theory of pseudo-holomorphic curves (smooth imbedded surfaces on which the
symplectic form restricts to a volume form).

Problem 4.138 (Gompf) (A) Conjecture: Any closed, minimal, symplectic 4-manifold
is irreducible.

(B) If X4 is irreducible, simply connected, has b+2 > 0, and has an almost complex structure,
then does it have a symplectic structure?

Remarks: Minimality means that there is no symplectically imbedded 2-sphere of self-
intersection −1.
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(A) is nearly true. If X is symplectic (with 2-form compatible with the orientation of
X) and b+2 ≥ 2, then the first Chern class of the associated almost complex structure has
non-zero Seiberg–Witten invariant [1037,Taubes,1994,Math. Res. Lett.]. This implies, as
in the case of algebraic surfaces (see the Update to Problem 4.37) that if X decomposes as
a smooth connected sum, then one of the summands has a negative definite (and therefore
standard) intersection form and a fundamental group with no non-trivial finite quotients.
This is close to saying that the summand is a connected sum of −CP2’s. The existence of
such a connected summand in turn contradicts the minimality of X [1040,Taubes,1995c,
Math. Res. Lett.].

More recently, Kotschick [611,1995a] proved that a minimal, symplectic, four-manifold
with b+2 > 1, and with residually finite fundamental group, is irreducible (any summand of
a connected sum decomposition is a smooth homotopy 4-sphere).

Problem 4.139 (A) (McDuff) Let X4 be a closed, minimal, symplectic 4-manifold con-
taining a symplectic surface F 2 satisfying c1(F 2) > 0. Does it follow that X must be
rational or ruled?

(B) (Gompf) IfX is closed and symplectic, and 3σ(X) > χ(X) = ordinary Euler characteristic,
does it follow that X is ruled?

Remarks: Ruled surfaces are holomorphic CP1 bundles over Riemann surfaces. Rational
means CP2 up to blowing up or down, which includes ruled surfaces overCP1. (A) is true for
Kähler surfaces (see [205,Clemens, Kollar, & Mori,1988]) and when F 2 = S2 [734,McDuff,
1990,J. Amer. Math. Soc.], [735,McDuff,1991,Ann. Inst. Fourier (Grenoble)].

Problem 4.140 (Generalized Thom Conj. Symplectic Manifolds) In a symplectic 4-
manifold X, does a symplectic 2-manifold F minimize genus in its homology class?

Remarks: IfX is a Kähler manifold then the answer is yes, at least for classes represented by
holomorphic curves of non-negative self-intersection (see Update to Problem 4.36). The result
extends to symplectic manifolds with b+2 > 1 (with the same proof), because Taubes [1037,
1994,Math. Res. Lett.] has shown that they have non-trivial Seiberg–Witten invariants
with respect to the first Chern classes of the associated almost complex structures.

In a symplectic 4-manifold, the adjunction formula still holds. Thus, if F is a symplec-
tically imbedded surface, then 2 · genus(F )− 2 = F · F − c1(X)(F ) where c1(X) is the first
Chern class of TX equipped with a U(2) structure coming from the symplectic structure.

Thus the open cases are when b+2 = 1 or the self-intersection is negative.
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Problem 4.141 (Eliashberg) An open symplectic 4-manifold M4 is called convex if there
exists a vector field X on M such that:

• X is contracting, i.e. Xω = −ω,

• X integrates to an R-action which can have fixed points but must be complete,

• there is an exhaustion of M4 by compact sets K1 ⊂ K2 ⊂ · · · ⊂ M4 with
⋃
Ki = M

such that all Ki are mapped into themselves under the positive flow of X.

(A) Are there convex symplectic structures on all exotic R4’s?

Remarks: A Stein manifold automatically has a convex symplectic structure; Gompf
has shown that some exotic R4’s (they imbed in S4) have Stein structures (see Problem
4.78).

(B) Are there non-equivalent convex structures on the standard R4?

Remarks: Stably (i.e. after crossing withR4 and, sometimes, R2) all convex structures
are equivalent [281,Eliashberg & Gromov,1991].

(C) Is there a convex symplectic structure on S2 × R2?

Remarks: If such a structure exists, it has to be topologically non-standard at in-
finity, i.e. the exhaustion mentioned above cannot be made by compact Ki which are
diffeomorphic to S2 × B2 [277,Eliashberg,1990a]. Gompf has shown that some exotic
S2 ×R2’s have Stein structures and hence convex symplectic structures.

(D) Is the space Sympl of all standard-at-infinity symplectic structures on R4 contractible
(or at least connected)?

Remarks: This is equivalent to the contractibility of the group Diff(D4, ∂D4). Indeed,
this group acts on Sympl and therefore we have an evaluation map

Diff(D4, ∂D4)→ Sympl.

This is a fibration whose fiber is the group of symplectomorphisms of D4 fixed at the
boundary. This group is contractible according to [414,Gromov,1985,Invent. Math.].

Problem 4.142 (Eliashberg & Gompf) Do all oriented 3-manifolds M3 admit tight con-
tact structures? fillable contact structures?



255

Remarks: A contact structure is a 2-plane field on M which is nowhere integrable; it
determines an orientation (let α be a 1-form such that ker(α) is the 2-plane field, and then
contact means that α ∧ dα 6= 0 so α ∧ dα gives an orientation) which must agree with the
given one on M3.

Such a field is tight if, given a smoothly imbedded B2 in M , the 1-dimensional foliation
(with singularities) on B2 obtained from the intersections of contact planes and tangent
planes to B2 has no closed, non-singular, integral curves. Bennequin [76,1983,Astérisque]
proved that the standard contact structure on R3 (planes equal to the kernel of dz + xdy)
is tight, and constructed an example of a non-tight (overtwisted) contact structure on R3

which is, therefore, not diffeomorphic to the standard one.

There are at least three notions of fillable:

(1) M3 is holomorphically fillable if M3 is the oriented, strictly pseudo-convex boundary
of a compact, complex surface (that is, using a Hermitian metric, at any p ∈ M3 the
outward normal np to M at p is taken by multiplication by i to a tangent vector to M
at p, and then the orthogonal complex line should equal the contact plane at p).

(2) M3 is strongly symplectically fillable if M3 oriented bounds a compact, symplectic 4-
manifold (W 4, ω) such that ω(P ) 6= 0 for all contact planes P , and there exists a vector
field X near M , which is outward pointing and transverse to M at M , and has the
property that its flow expands ω, i.e. LXω = ω (see Problem 4.141).

(3) M3 is symplectically fillable if M3 oriented bounds a symplectic 4-manifold (W 4, ω)
such that ω(P ) 6= 0 for all contact planes P .

It is known that (1) =⇒ (2) =⇒ (3) =⇒ tight, but none of the converses are known.
The Poincaré homology 3-sphere Σ with the orientation that does not bound the negative
definite E8 is a candidate (Gompf) for an oriented M3 which has no tight contact structure,
and then Σ#− Σ would have no tight contact structure with either orientation.

Tight structures which satisfy (3) but may not satisfy (1) may be given by tight structures
on T 3 coming from certain cyclic covers of the cotangent S1-bundle of T 2 [385,Giroux,1994,
Ann. Sci. École Norm. Sup. (4)].

This problem is a more detailed version of the old Problem 4.64 (B).

Problem 4.143 (Fukaya) Do there exist simply connected, closed 4-manifolds (other than
#n(S2×S2) or #pCP2#q(−CP2)) with metrics of positive scalar curvature which are either
not spin or spin with zero signature?



256 CHAPTER 4. 4-MANIFOLDS

Remarks: (Kronheimer & Mrowka) It follows from [1117,Witten,1994,Math. Res. Lett.]
using the Seiberg–Witten monopole equation that any 4-manifold with b+ > 1 and a nontriv-
ial Seiberg–Witten class has no metric of positive scalar curvature. Thus complex surfaces
of general type with pg > 0 do not have metrics of positive scalar curvature.

Problem 4.144 (Suciu) Consider a finite union L of complex lines in C2. Its comple-
ment, M(L) = C2 \ L, is a smooth 4-manifold. Does the combinatorial data determine the
fundamental group of M(L)? the homotopy type of M(L)? The topological type? or even
the diffeomorphism type?

Remarks: Combinatorial data means the poset of lines, together with their points of inter-
section, ordered by reverse inclusion. A general reference is [860,Orlik & Terao,1992].

The topological type of the complement determines the combinatorial data [541,Jiang &
Yau,1993,Bull. Amer. Math. Soc.], although the homotopy type does not [288,Falk,1993,
Invent. Math.]. If all the lines in L have real equations, stronger combinatorial data (the
oriented matroid) determine the topological type of M(L) [102,Björner & Ziegler,1992,J.
Amer. Math. Soc.]. G. Rybnikov has found two arrangements (with complex equations)
that have the same intersection poset, but different fundamental groups.

Problem 4.145 (Suciu) Consider a finite union H of complex planes in C3 through the
origin. We have the Milnor fibration

C3 \ H → C?

given by taking the product of the linear forms which define the planes.

Questions: Does the combinatorial data determine the homology of the Milnor fiber?
the characteristic polynomial of the monodromy?

Remarks: Combinatorial data means the poset of planes, together with their lines of in-
tersection, and the origin. The cohomology ring of the complement itself is combinatorially
determined [859,Orlik & Solomon,1980,Invent. Math.].

The homology of the Milnor fiber has been computed [219,Cohen & Suciu,1995,J. London
Math. Soc.] using the presentation for π1(C3\H) found in [917,Randell,1982,Invent. Math.]
and [918,Randell,1985,Invent. Math.] for real equations, and [47,Arvola,1992,Topology] in
general.

Problem 4.146 (Suciu) LetH be an arrangement of planes in C3 through the origin. Does
the combinatorial data determine whether the complement of H is a K(π, 1)?



257

Remarks: It is known that simplicial arrangements are K(π, 1)’s [239,Deligne,1972,Invent.
Math.], but generic arrangements are not [466,Hattori,1975,J. Fac. Sci. Univ. Tokyo Sect.
IA Math.]. A long-standing conjecture of Saito (free arrangements are K(π, 1)’s) has been
disproved by Edelman & Reiner [269,1995,Bull. Amer. Math. Soc.]. For a thorough
discussion of the problem, and a new K(π, 1) test, see [289,Falk,1995,Topology].

Problem 4.147 (Suciu) Consider a finite union L of projective lines inCP2, and an integer
n ≥ 2. Let Y (L, n) be the minimal desingularization of the branched cover of CP2 along L,
defined by the map π1(CP2 \ L)→ H1(CP2 \ L;Z/nZ).

Questions: Does the combinatorial data determine the homotopy type of Y (L, n)? the
topological type? or even the diffeomorphism type?

Remarks: The complex algebraic surfaces Y (L, n) were introduced in [495,Hirzebruch,
1983]. See [489,Hironaka,1993] for further details.

Problem 4.148 (Boileau) Let f, g : C2 → C be two polynomial maps. Call f and g
topologically equivalent if the following diagram commutes:

C2 f
- C

C2

homeo

? g
- C
?

homeo

For any polynomial map f : C2 → C there is a finite set of critical values Λf such that
f | : C2 − f−1(Λf) −→ C− Λf is a locally trivial fibration.

Question: If f has only isolated singularities, does the homeomorphism type of the
generic fiber and the topological monodromy of this locally trivial fibration determine the
topological type of f?

Remarks: The assumption of isolated singularities is necessary because the polynomials
x2y+x and x(xy+1)2 both have critical value 0, generic fiber a twice-punctured 2-sphere, and
the identity monodromy around the fiber over 0, but the first polynomial has no singularities
whereas the second has non-isolated singularities.



258 CHAPTER 4. 4-MANIFOLDS



Chapter 5

Miscellany

• Miscellaneous Problems 5.1–5.8 (1977), 5.9–5.29 (new).

• Groups, 5.1, 5.7, 5.9–5.11.

• Complexes, 5.2–5.5, 5.13, 5.14.

• Graphs, 5.8, 5.15–5.18.

• TQFT’s, 5.19, 5.20, and 3.108.

• More dimensions, 5.21–5.29.

259



260 CHAPTER 5. MISCELLANY

Problem 5.1 (M. Cohen) Let P and P ′ be finite presentations (with the same deficiency)
of a given group π. Let KP and KP ′ be the 2-dim CW -complexes associated to these
presentations. Consider the assertions:

(A) KP ' KP ′ (homotopy equivalence),

(B) KP y KP ′ (simple homotopy equivalence),

(C) KP y3 KP ′ (simple homotopy equivalence by moves of dimension ≤ 3),

(D) P can be changed to P ′ by extended Andrews–Curtis moves [37,Andrews & Curtis,
1965,Proc. Amer. Math. Soc.] (i.e., we can change the presentation P = {x1, . . . , xn :
R1, . . . , Rm} in these ways

1. Ri → R−1
i ,

2. Ri → RiRj , i 6= j,

3. Ri → wRiw
−1, w any word,

4. add generator xn+1 and relation wxn+1.)

Note: Redundant relations cannot be added. Then (D) ⇒ (C) ⇒ (B) ⇒ (A) and (C)
⇒ (D) [1121,Wright,1975,Trans. Amer. Math. Soc.]. (A) fails for the trefoil group [257,
Dunwoody,1976,Bull. London Math. Soc.] and for many finite abelian groups [755,Metzler,
1976,J. Reine Angew. Math.].

Question: What other relations hold?

Update: (A) does not imply (B) [756,Metzler,1990,J. Reine Angew. Math.], [686,Lustig &
Moriah,1991,Topology]. Whether (B) implies (C) is still open (generalized Andrews–Curtis
Conjecture).

For a recent and thorough discussion of this problem, see Hog-Angeloni & Metzler’s
Chapters I and XII in [501,Hog-Angeloni, Metzler, & Sieradski,1993]. This excellent book
contains many other problems on the topics of Problems 5.1, 5.2 and 5.4.

Problem 5.2 (Lickorish) Let K be a contractible finite 2-complex.

(A) Zeeman Conjecture: K × I collapses to a point [1138,Zeeman,1964,Topology].

(B) Conjecture: K 3-deforms to a point, i.e., there exists a 3-complex L such that K ↙
L↘ pt.
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(C) Conjecture: The unique 5-dim regular neighborhood of K2 in R5 is B5.

(D0) Andrews–Curtis Conjecture: Any presentation of the trivial group can be changed
to the trivial presentation by Andrews–Curtis moves [37,Andrews & Curtis,1965,Proc.
Amer. Math. Soc.].

Remarks: Conjecture (A) implies the Poincaré conjecture. Conjecture (C) is equivalent to
knowing whether the boundary is S4. (A) ⇒ (B) ⇒ (C) and (B) ⇔ (D0). The analogue of
Conjecture (D0) is false for nontrivial groups (see (D) of Problem 5.1). Possible counterexam-
ples to (D0) are {a, b : a−1b2a = b3, b−1a2b = a3} and {a, b, c : [a, b]b = [b, c]c = [c, a]a = 1}.
It is not known whether the regular neighborhoods in R5 of the corresponding 2-complexes
are B5.

Update: Still open. For a recent and thorough discussion of this problem, see Matveev &
Rolfsen’s Chapter XI in [501,Hog-Angeloni, Metzler, & Sieradski,1993].

It follows from [622,Kreher & Metzler,1983,Topology] that if K 3-deforms to a point,
then K 2-expands to another 2-complex K ′ such that K ′ × I collapses to a point, (thus (B)
implies a weakened version of (A)).

It is particularly interesting to note that the Zeeman conjecture for special polyhedra
which are spines of compact 3-manifolds is equivalent to the Poincaré conjecture [380,Gillman
& Rolfsen,1983,Topology], and the Zeeman conjecture for special polyhedra which do not
imbed in compact 3-manifolds is equivalent to the Andrews–Curtis Conjecture [720,Matveev,
1987,Sibirsk. Mat. Zh.] and [720,Matveev,1987,Sibirsk. Mat. Zh.].

Another interesting presentation of the trivial group is {a, b : aba = bab, a4 = b5} [29,
Akbulut & Kirby,1985,Topology]. (D0) probably fails for this presentation, but an associated
homotopy 4-sphere is shown to be standard by a judicious addition of a 2-,3-handle pair [392,
Gompf,1991a,Topology].

Problem 5.3 (R. Fenn) Is there an acyclic 2-complex which does not imbed in R4?

Remarks: All n-complexes with Hn cyclic imbed in R2n, n ≥ 3.

Update: Using Freedman’s work, Kranjc proved [617,Kranjc,1991,Pacific J. Math.] that
every 2-complex with H1 = H2 = 0 imbeds topologically locally flat in R4. The PL case is
still open.

Problem 5.4 (J. H. C. Whitehead) Is every subcomplex of an aspherical 2-complex as-
pherical? Assume finiteness if you wish.
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Remarks: Aspherical means πk = 0 for k > 1. For partial results, see [218,Cockroft,1954,
Proc. London Math. Soc.], and [9,Adams,1955,J. London Math. Soc.].

Update: Still open. For a recent and thorough discussion of this problem, also known as
Whitehead’s Asphericity Question, see Bogley’s Chapter X in [501,Hog-Angeloni, Metzler,
& Sieradski,1993].

Problem 5.5 (A) (Lickorish) Conjecture: Any linear subdivision of an n-simplex col-
lapses simplicially.

Remarks: True for n ≤ 3 [200,Chillingworth,1967,Math. Proc. Cambridge Philos.
Soc.] .

(B) (Goodrick) Conjecture: Any linear subdivision of a star-like n-cell in Rn collapses
simplicially.

Remarks: True for n < 3. Note true for a triangulation of a topological n-cell [400,
Goodrick,1968,Math. Proc. Cambridge Philos. Soc.] .

Update: Still open.

Problem 5.6 What more can be said about nonsingular real algebraic varieties in RP2, RP3

or RP4?

Remarks: A number of pretty results about algebraic invariants of such varieties have been
established (by complexifying) in a series of papers by Gudkov, Arnold, Rohlin, Kharlamov
and Zvonilov in Functional analysis and its applications during the 1970’s; there is also
Gudkov’s survey [419,Gudkov,1974a,Uspehi Mat. Nauk].

Update: None attempted.

Problem 5.7 (Freedman) Let G be a nontrivial group, G ∗ Z the free product, and (G ∗
Z)/r the free product with one relation r.

Conjecture (Kervaire): (G ∗ Z)/r is nontrivial.

Remarks: Any counterexample must satisfy: (i) G is perfect, (ii) the degree of t (= gener-
ator of Z) in the relation r is ±1 (proof: abelianize).

The conjecture is true if G has a normal subgroup of finite index [373,Gerstenhaber &
Rothaus,1962,Proc. Nat. Acad. Sci. U.S.A.].
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It seems rare that both natural maps A → A ∗ B/r and B → A ∗ B/r have nontrivial
kernels. This happens if A = Z/2Z, B = Z/3Z and r = ab. Are there any other examples
of a different flavor? Specifically if A is torsion-free and B nontrivial, is either A or B into
A ∗B/r always an injection?

Here is a relation to knot theory. Let M3
K be the result of surgery on a knot K with

0-framing. There is a natural map fK : MK → S1 × S2 and the closer K is to being trivial,
the closer fK is to a homotopy equivalence, e.g., fK always induces an isomorphism on
integral homology, and induces a Z[Z]-homology isomorphism exactly when the Alexander
polynomial is trivial. H2(π1(S3 −K)/l) = 0 iff MK is diffeomorphic to S1 × S2#H3 where
H3 is a homology 3-sphere (l represents the longitude of K). Since π1(MK) = π1(S3−K)/l
is normally generated by a meridian, the conjecture would imply that H3 above could be
replaced by a homotopy 3-sphere. (See Problems 1.16 and 1.17.)

Update: Klyachko [588,Klyachko,1993,Comm. Algebra.] has recently proved the conjec-
ture in the case where G is torsion free; indeed, he shows here that G injects into (G ∗ Z)/r
if (ii) holds.

It should be noted that in the final paragraph, the relevance of the Kervaire conjecture
is now moot because Gabai has proved [355,1987a,J. Differential Geom.] that if MK has an
S1 × S2 summand, then K is the unknot, in which case MK = S1 × S2.

Problem 5.8 Does there exist a graph G such that for any imbedding f : G → R3, f(G)
contains a nontrivial knot?

Remarks: It suffices to consider G = Cn = complete graph on n-vertices. (Added in proof.
Yes, for n = 7, John Conway.)

Update: Yes, for C7 [226,Conway & Gordon,1983,J. Graph Theory]. See Problem 5.15 for
further material.

NEW PROBLEMS

Problem 5.9 (A) Consider the closure of groups of subexponential growth under the oper-
ations of extensions and direct limits. Is the resulting class the class of all amenable
groups?

Remarks: Freedman & Teichner [339,1995], [340,1996], have shown that 4-dimensional
topological surgery works when the fundamental group belongs to the above class (see
old Problem 4.6).
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Grigorchuk [411,1985,Math. USSR-Izv.] has constructed (uncountably many) finitely
generated groups of intermediate growth, i.e. their growth function (see below) is
eventually bigger than any polynomial but smaller than any exponential function.
This implies that the class of amenable groups (see below) is larger than the closure
of finite and abelian groups under extension and direct limits, since no group in this
closure has intermediate growth [204,Chou,1980,Illinois J. Math.].

A locally compact group is called amenable if it has a left invariant mean (which is
basically a finite Haar measure). Using the so called Følner conditions (see e.g. [869,
Paterson,1988]) one shows that finitely generated groups of subexponential growth are
amenable.

Given a finite set of generators of a group, one can define the corresponding growth
function N → N by sending a natural number r to the number of distinct group
elements which can be written as words of length ≤ r in the generators and their
inverses. (In the Cayley graph with the word metric, this number is the cardinality of
the ball of radius r.)

There is another definition of amenable which intuitively says that the quotient of the
volume of the boundary of the ball of radius r by the volume of the ball itself goes to
zero as r goes to infinity; but balls are not quite general enough to get all amenable
groups. Amenability is equivalent to the Følner condition: Given ε > 0 and a compact
subset C of the group G, there exists a non-null compact subset K of G such that

λ(x ·K∆K)/λ(K) < ε ∀x ∈ C.

Here λ is a Haar measure on G and ∆ denotes the symmetric difference.

(B) Can a finitely presented group have intermediate growth?

Remarks: Grigorchuk’s examples above are finitely generated but not finitely pre-
sented.

Problem 5.10 (G. Martin) Are finitely generated, convergence groups (in Homeo(Sn))
accessible?

Remarks: A group G is accessible if every sequence of non-trivial algebraic splittings of
G as free products with amalgamation along finite subgroups or as HNN extensions along
finite subgroups, is finite, or, equivalently,G is the fundamental group of a graph of groups
in which all edge groups are finite and every vertex group has at most one end. (For the
definition of convergence group, see Problem 3.71.)

Wall [1096,1971,J. Pure Appl. Algebra] conjectured that all finitely generated groups
are accessible, but this is not true [259,Dunwoody,1993]
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A finitely generated G is accessible if G has uniformly bounded torsion [662,Linnell,1983,
J. Pure Appl. Algebra] or if G is finitely presented [258,Dunwoody,1985,Invent. Math.].
It follows from Grushko’s theorem that a finitely generated torsion free group is accessible;
since Mobius groups are virtually torsion free (Selberg’s Lemma), they are also accessible.

Recently Dunwoody [260,Dunwoody,1995] has shown that a finitely generated G is ac-
cessible unless it has an infinite torsion subgroup. Martin & Skora have shown [699,1989,
Amer. J. Math.] that a convergence group on S2 has no infinite torsion subgroup, so those
groups are accessible. (See Problem 3.71.)

Problem 5.11 (Mess) Let X be a finite, aspherical complex.

(A) Is the center Z(π1) of π1(X) finitely generated?

Remarks: This problem appears in [223,Conner & Raymond,1977,Bull. Amer. Math.
Soc.].

The center must be a group of finite rank, i.e. a subgroup of Qn where Q is the
rationals. The answer to (A) is yes if X is a 2-complex [86,Bieri,1976,J. Pure Appl.
Algebra], or if π1(X) has a faithful, finite dimensional, linear, representation [87,Bieri,
1980,Math. Zeit.].

(A) is also interesting ifX is only assumed to have finitely many cells in each dimension.

(B) Is it possible that π1(X)/Z(π1(X)) has nontrivial rational cohomology in infinitely many
dimensions? This is open in the simple case of the center being Z.

(C) Is there an example of an X with simple fundamental group?

(D) Can a finite dimensional, aspherical complex have a fundamental group which is of
intermediate growth (subexponential but faster than polynomial)? Can non-elementary
amenable groups occur?

Problem 5.12 (Short & Neumann) Let P be the set of all polynomials in one variable
with integer coefficients other than the cyclotomic polynomials. Let ρ : P → R be the
function defined by letting ρ(P ) be the product of the modulus of all complex roots which
lie strictly outside the unit circle, that is:

ρ(P ) =
∏

roots ri,|ri|>1

|ri|.

(ρ is also know as the Mahler measure of P [647,Lehmer,1933,Ann. of Math.].)
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Conjecture (Lehmer) [ibid.]: ρ has a minimum, and it is 1.176780821... which is
achieved by the degree 10 polynomial

x10 − x9 + x7 − x6 + x5 − x4 + x3 − x+ 1.

Remarks: The above polynomial has one root outside the unit circle, listed above. Lehmer
conjectures a lower bound for polynomials with a non-real root outside the unit circle, namely
1.2013961862..., which is realized by the polynomial

x18 + x17 + x16 − x13 − x11 − x9 − x7 − x5 + x2 + x1

which has two complex conjugate roots outside the unit circle.

These polynomial are related to the lengths of geodesics in arithmetic manifolds: the first
(second) Lehmer conjecture implies that a geodesic in an arithmetic 2-orbifold (3-orbifold)
has length at least 0.162357614... (0.09174218...) [838,Neumann & Reid,1992a].

This polynomial is the Alexander polynomial of the (2,3,7)-pretzel knot, which has three
surgeries giving finite π1.

Problem 5.13 (Habegger) Suppose M and N are PL-homeomorphic cubulated n-manifolds.
Are they related by the following set of moves: excise B and replace it by B′, where B and B′

are complementary balls (unions of n-cubes which are homeomorphic to Bn) in the boundary
of the standard (n+ 1)-cube?

Remarks: A similar statement is true for combinatorial triangulations [864,Pachner,1991,
European. J. Combin.].

Problem 5.14 (Zhong-mou Li) The standard CW-complex of a presentation

〈a1, a2, · · · , ak|R1, R2, · · · , Rk〉

is called a generalized dunce hat if for each i, 1 < i > K, the word Ri cancels to ai.

Question: Is the Zeeman Conjecture true for generalized dunce hats?

Remarks: Possibly the Zeeman Conjecture (see Problem 5.2 [1138,Zeeman,1964,Topol-
ogy]) reduces to this special case. A generalized dunce hat collapses after crossing with an
appropriate tree [1099,Wedel,1994].
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Problem 5.15 (Flapan & Gordon) Characterize all graphs G that have the following
Property: every imbedding of G in R3 contains a subgraph which is a knotted, simple closed
curve, (this generalizes Problem 5.8).

Remarks: It is known (Robertson & Seymour) by that there is some finite obstruction set of
graphs, F , such that a graph G has an imbedding in R3 with no nontrivial knotted subgraph
iff G has no minor in F . But the graphs in F are not known.

Graphs are assumed to be finite, and loops and multiple edges are allowed. By definition,
H is a minor of G if H can be obtained from a subgraph of G by contracting edges.

K7, the complete graph on 7 vertices, has the Property [226,Conway & Gordon,1983,J.
Graph Theory], as does K5,5 [993,Shimabara,1988,Tokyo J. Math.]. An interesting open case
is K3,3,1,1 [598,Kohara & Suzuki,1992]. (Km1,...,mk , for k > 1, denotes the graph obtained
from k sets of vertices, the ith set having mi vertices, by attaching an edge to any two vertices
not belonging to the same set.)

The case of links (rather than knots) has been completely solved [930,Robertson, Sey-
mour, & Thomas,1993,Bull. Amer. Math. Soc.]. They prove that a graph G has an
imbedding containing no non-trivial link (of one or more components) iff G has no minor in
the Petersen family. The Petersen family consists of the seven graphs which are K6 and the
six graphs which can be obtained fromK6 by a sequence of exchanges of a Y (a neighborhood
of a 3-valent vertex) with a triangle (complete graph on 3 vertices).

Problem 5.16 (Kinoshita & Mikasa) Fix a plane R2 in R3, and let proj(K) be the
subcomplex in R2 obtained by projecting a PL knot K from R3 to R2 (assume always that
K is in general position with respect to the projection). Call K and K ′ equivalent, K ∼ K ′,
if there exists a (perhaps orientation reversing) homeomorphism of R3 carrying K to K ′.
Define Proj(K) = {proj(K ′) | K ′ ∼ K}.

(A) Is it true that if Proj(K1) = Proj(K2), then K1 ∼ K2?

The same definitions can be made for Θ-curves in R3 (a Θ-curve is the image of a PL
imbedding of the graph with two vertices and three edges between them).

(B) Is it true that if Proj(Θ1) = Proj(Θ2), then Θ1 ∼ Θ2?

A Θ-curve is called trivial if it is equivalent to a Θ-curve in R2. A non-trivial Θ-curve
Θ is called an atom if, for any Θ-curve Θ′ with Proj(Θ′) ⊃ Proj(Θ), then Θ′ ∼ Θ or
Θ′ is trivial. It is known that 3∗1, 31, 51, 61 are atoms (see Figure 5.16.1) [761,Mikasa,
1993]. (For knots, the trefoil knot is the only atom [1035,Taniyama,1989,Tokyo J.
Math.].)
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3∗1 31 51 61

Figure 5.16.1.

(C) How many atoms are there for Θ-curves?

A Θ-curve is called strongly almost trivial if it has some projection to R2 which does not
contain a projection of any non-trivial knot. The Θ-curves 51 and 61 in Figure 5.16.1
are strongly almost trivial. A Θ-curve is called almost trivial if its three constituent
knots are trivial. Strongly almost trivial implies almost trivial.

(D) Does there exist a Θ-curve which is almost trivial but not strongly almost trivial?

Problem 5.17 (Freedman) Given a finite set of points X in ∂B3, let T be a tree in B3

of minimal length with ∂T = X. Is T unknotted, that is, is there a PL imbedded 2-ball in
B3 containing T?

Remarks: Krystyna Kuperberg proposes the following knotted tree which, if indeed mini-
mal, would mean a negative answer to the problem.

Assume the following notation:

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1},

P = {(x, y, z) ∈ S2|y = 0},

Q = {(x, y, z) ∈ S2|z = 0}.

The set X of points on S2 will depend on four small constants ε1, ε2, δ1, and δ2.

Let A1, B1, C1, A2, B2, and C2 be points on P close to the vertices of a regular hexagon
inscribed in P such that: B1 = (−1, 0, 0), B2 = (1, 0, 0); A1 and A2 are at ε1 distance and

above the points (−1
2
, 0,

√
3

2
) and (1

2
, 0,

√
3

2
); C1 and C2 are at ε1 distance and below the points

(−1
2
, 0,−

√
3

2
) and (1

2
, 0,−

√
3

2
). The minimal tree of each of the triples {Ai, Bi, Ci} is a triod

as shown in Figure 5.17.1.
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A1 A2

B1 B2

C1 C2

Figure 5.17.1.

Split the point C1 [A2] into two points E1 and F1 [E2 and F2] which are ε2 apart and

symmetric with respect to the xz-plane so that they are farther from the point (1
2
, 0,−

√
3

2
)

[(−1
2
, 0,

√
3

2
)] than from the point B1 [B2].

Let L be an arc in the δ1-neighborhood N of Q going around N one-and-a-half times
and connecting two points D1 and D2 in different boundary components of N , close to B1

and B2 respectively. Choose a sequence of points x1 = D1, x2, . . . , xn = D2 ∈ L with the line
order of L and such that xi and xi+1 are less than δ2 apart.

Choose the constants ε2, ε1, δ1, and δ2 (in this order) so that the minimal tree T (drawn
in Figure 5.17.2) of the set

X = {A1, D1, E1, F1, E2, F2, D2, C2} ∪ {x1, ....xn}

is knotted (Figure 5.17.3 shows a subtree of T which is clearly knotted).

A1 E2
F2

D2

C2
E1F1

D1

Figure 5.17.2.
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A1

C2

Figure 5.17.3.

Problem 5.18 Let P be a polygon, homeomorphic to S1, in the plane R2; consider motions
of P which allow bending at the vertices, but which preserve edge length (and straightness)
and imbeddedness.

(A) Question (S. Schanuel): Can any P be moved to a convex polygon by such motions?

(B) (G. Bergman) Same question as (A) except that P is assumed to be homeomorphic
to an interval [0,1], and should be moved into a line.

Remarks: Yes to (A) implies yes to (B) (just close up the arc with any disjoint polygonal
arc). The polygonal arc in Figure 5.18.1 was proposed as a possible counterexample to (B),
but in fact it can be moved into a line.

Figure 5.18.1.

Problem 5.19 (Kontsevich) Compute the cohomology H∗(Cn;Q) of the graph complex Cn
for each n > 0.

Remarks: The graph complex Cn is defined as follows (see [603,Kontsevich,1994]): consider
the pairs (Γ, or) where Γ is a finite, connected graph whose vertices have valence ≥ 3, and
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or is an orientation of H1(Γ;R) together with an ordering of the edges of Γ (or equivalently,
using the exact sequence

0→ H1(Γ)→ C1(Γ)→ C0(Γ)→ H0(Γ)→ 0,

an ordering of the vertices and an orientation of each edge). Let Cn be the finite dimensional
vector space overQ generated by the pairs (Γ, or) for which n+1 = rank(H1(Γ;Q)), subject
to the equivalence relation (Γ,−or) = −(Γ, or), (this implies that (Γ, or) = 0 for any Γ
containing a loop (an edge whose endpoints are identified)).

Decompose Cn into Ck
n, k ≥ 0, where k = 3V − 2E and E is the number of edges and

V is the number of vertices. Thus C0
n consists of graphs whose vertices are all 3-valent, C1

n

consists of graphs which have exactly one 4-valent vertex and the rest 3-valent, and so on.
Define a boundary homomorphism d : Ck

n → Ck+1
n by

d(Γ, or) =
∑

all edges ei

(Γ/ei , induced orientation),

where the induced orientation is the same orientation on H1(Γ/ei) ∼= H1(Γ) and the ordering
of the edges of H1(Γ/ei) is (−1)i+1e1 . . . êi . . . eE. Clearly dd = 0. Then H∗(Cn;Q) is the
cohomology of the chain complex {Ck

n, d}.

Little is known about Hp(Cn;Q) for p > 0, but it can be non-zero, e.g. rankH3(C5;Q) = 1
(Bar-Natan). The case of real interest, however, is H0(Cn) which is closely related to low-
dimensional problems [Kontsevich, ibid.], [1038,Taubes,1995a], [231,Culler & Vogtmann,
1986,Invent. Math.] and the next Problem 5.20. Bar-Natan has shown that rankH0(Cn;Q)
is 1, 1, 1, 2, 2, 3, 4, 5 for n = 1, . . . , 8.

Problem 5.20 (Kirby & Melvin) Let M be a closed 3-manifold with a spin structure,
and let τ be a framing (trivialization) of the tangent bundle which extends the spin structure.
Fix a point p ∈M , let ∆ be the diagonal in M ×M , and let

Θ = (M × p) ∪ (p×M) ∪∆.

If N is a suitably chosen neighborhood of Θ in M ×M then ∂N = ∂(M ×M − intN) is a
3-manifold bundle over S2 with fiber equal to the connected sum of M , M and −M .

To obtainN , first choose a coordinate chartR3 centered at p and then let f : R3×R3 → R3

be defined by f(x, y) = |x|2y − x|y|2. Extend f over a neighborhood of Θ by using the
projection maps M×R3 → R3 and R3×M → R3, and using the framing of M which frames
the normal bundle of the diagonal ∆. Then N is f−1 of a suitable 3-ball, say B3 in R3

(for a careful description of this construction using singular framings, see Section 1 in [1038,
Taubes,1995a]).
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The volume 2-form on S2, or its integral cohomology class, pulls back to a 2-form ω∂N ,
or class, on ∂N . If M is an integral homology 3-sphere, then the 2-form or integral class
extends to a 2-form ω, or integral cohomology class [ω], on (M ×M) − intN (if M is only
a rational homology 3-sphere, then only a multiple (by |H1(M ;Z)|) of ω extends, and for
non-rational homology 3-spheres, more must be deleted from M ×M).

The integral

I(M, τ ) =
∫
(M×M)−intN

ω ∧ ω ∧ ω

is an invariant of the framed M which has been shown to be zero for the canonical framing
on homology 3-spheres by Taubes [1038,1995a]. Moreover, Taubes [1039,1995b] has shown
the following: let M and M ′ be rational homology spheres, let W be an oriented, spin
bordism between M and M ′ with the following properties: (1) the intersection form of W
is equivalent to a sum of metabolic pairs, and (2) the inclusions of both M and M ′ into W
induce injective maps on the first homology with Z/2Z coefficients; then the invariants of
M and of M ′ are the same (where W induces the same framing on M and M ′).

In this subject, framings of the tangent bundle TM , of TM ⊕ ε, or of TM ⊕TM [51,Atiyah,
1990,Topology], can be interesting; in the case at hand, we use the framing of TM because of
its use in definingN . One can define a function h : (M, τ )→ Z by h(M, τ ) = p1(Y, τ )−3σ(Y )
where ∂Y 4 = M . One wishes to define the canonical framing as the τ for which h = 0;
however

h(M, τ ) ≡ 2(rank(H1(M ;Z/2Z)) + 1) + µ (mod 4)

where µ is the µ-invariant of M with the spin structure defined by τ [583,Kirby & Melvin,
1995]. Since h(S3) ≡ 2 (mod 4), on homology 3-spheres one uses, in effect, the framing τ for
which h(M, τ ) = 2 [Taubes, ibid.]. If the framing changes by the generator 1 ∈ π3(SO(3) =
Z, then I(M, τ ) changes by 1.

Given a finite, oriented graph Γ with no loops (see previous Problem 5.19) whose vertices
are all 3-valent, one can also define a number I(M, τ,Γ) as follows: the orientation orders
the vertices and orients the edges, so we denote an edge by eij if it joins the ith vertex to
the jth vertex. This defines a 2-form ωij on XV , the cartesian product of V copies of M , by
setting:

ωij = p∗ij(ω)

where p∗ij is projection of XV onto its ith and jth factors, (V and E are the number of vertices
and edges, and 3V = 2E). Now let

I(M, τ,Γ) =
∫
XV

∧all edges eijωij .

This integral is well defined and gives an invariant on M with values in Hom(H0(Cn;Q),R)
(see Problem 5.19) [603,Kontsevich,1994] [55,Axelrod & Singer,1992], and is equal to I(M, τ )
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when Γ is the 3-valent graph with 2 vertices and 3 edges, ΓΘ. Also, there are further gen-
eralizations, in particular to 2-forms with values in a flat bundle of Lie algebras [Kontse-
vich, ibid.] [Axelrod & Singer, ibid.], and these should be closely related to the perturbative
Chern–Simons invariants of 3-manifolds [Axelrod & Singer, ibid.], [1116,Witten,1989,Comm.
Math. Phys.].

(A) Compute I(M, τ,Γ) for Γ ∈ H0(Cn;Q)

Remarks: As mentioned above, Taubes [ibid.] proved that I(M, τ,ΓΘ) = 0 for the
canonical framing on M .

One approach is to reinterpret the integral in terms of intersection theory using Poincaré
duality. For example in the case Γ = ΓΘ and M = S3, then

(S3 × S3)−N = S2 × B4.

A convenient Poincaré dual to [ω] (using what must turn out to be the canonical framing) is
(north pole)×B4 which we call Bnp. But it may be necessary to choose some other Poincaré
dual which we call B. In general, for a homology sphere M , the Poincaré dual to [ω] is
an oriented 4-manifold W 4 with ∂W ⊂ ∂N determined by the framing on TM . Taubes’
calculation can be reinterpreted as calculating the triple intersection of three copies of W ,
where the copies of ∂W are first made transverse (in fact, disjoint) using the framing and
then, rel boundary, the rest of the W ’s are made transverse.

(B) Can the integral I(M, τ,Γ) be reinterpreted, as in this simple example, in terms of inter-
section theory; one should count the points of intersection ofE transverse, codimension-
two manifolds in XV (each edge eij determines a Wij in the ith and jth copies of M in
XV )?

Remarks:The difficulty seems to lie in understanding the correct way to make these
codimension-two manifolds transverse at their boundaries (see [138,Bott & Taubes,
1994,J. Math. Phys.] and [351,Fulton & MacPherson,1994,Ann. of Math.] for a
discussion of boundary issues).

One can understand perturbative Chern–Simons invariants of knots in S3 in terms of the 2-
form ω and similar integrals [Kontsevich, ibid.], [61,Bar-Natan,1991], [62,Bar-Natan,1995a,
Topology], [138,Bott & Taubes,1994,J. Math. Phys.]. One uses trivalent graphs with bound-
aries lying on a circle to organize wedges of 2-forms to be integrated over the analogue of
XV . For example, using the graph Γ in Figure 5.20.1, an integral I(K,Γ) can be defined as
follows:
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−1
3

1
4

Figure 5.20.1.

I(K,Γ) =

1

4
{
∫
t1<t2<t3<t4

v(t1t3) ∧ v(t2t4)} −
1

3
{
∫
t1<t2<t3,B3

v(t1x) ∧ v(t2x) ∧ v(t3x)}

for the volume form v on S2, ti ∈ K parameterized by [0, 2π], x ∈ B3−K, and titj the unit
vector from ti to tj (same for tix) [61,Bar-Natan,1991].

ForM = S3, Bnp can be understood as the pairs of points inB3 = S3−(neighborhood of p)
whose first component lies north of the second, and B can be understood as defining all pairs
of points with one component above the other. Aspects of knot theory using projections of
the knot to the plane and counting overcrossings should be translatable into intersection
theory using the knots and Bnp or maybe B. For example, the linking number of knots K1

and K2 in B3 is given by the transverse intersection

(K1 × B
3) ∩ (B3 ×K2) ∩ Bnp

in S2 ×B4 ⊂ S3 × S3.

(C) Can the integral I(K,Γ) for the Γ in Figure 5.20.1 be understood by counting points with
sign of the transverse intersection in X4 of (K×B3×B3×B3)∩ (B3×K×B3×B3)∩
∩(B3 × B3 ×K ×B3) ∩ (B3 × B3 × B3 ×K) ∩B13 ∩ B24, where

Bij = {(x1, x2, x3, x4) ∈ X4|(xi, xj) ∈ B ⊂ X2 = S2 × B4}?

Can this be generalized to other graphs? Again, the difficulty apparently lies in making
sense of transversality near the boundaries.

For more general 3-manifolds M , at least including integral homology 3-spheres, W is the
analogue of Bnp or B for S3; one could say that W consists of all pairs of points in M3 for
which the first point is above the second.

(D) Can the perturbative Chern–Simons knot invariants of (C) be extended to knots in more
general 3-manifolds, particularly through the use of an appropriateW 4 and appropriate
rules for making manifolds transverse at their boundaries?
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(E) If the answer to (D) is yes, can a Dehn surgery formula be found relating the 3-manifold
invariants of (A) and (B) to the knot invariants of (C) and (D) applied to a framed
link description of the 3-manifold?

Problem 5.21 (Yau) Conjecture: All smooth 2k-manifolds, k > 2, with a given almost
complex structure, are actually complex manifolds (the complex structure may not deform to
the given almost complex structure).

Remarks: For k = 1, the conjecture is true since all orientable 2-manifolds are complex.
For k = 2, the conjecture fails dramatically because, assuming simply connectedness, X4

is almost complex iff b+2 is odd, whereas there are many restrictions on the characteristic
classes of a complex surface, e.g. c21 ≤ 3c2 ([774,Miyaoka,1977,Invent. Math.] and [1132,
Yau,1977,Proc. Nat. Acad. Sci. U.S.A.]), so that the connected sum of three copies of CP2

is not complex. Note that [1131,Yau,1976,Topology] contains an example of a parallelizable
4-manifold which is not complex.

Furthermore, it follows from the Kodaira classification of surfaces that the fundamental
groups of complex surfaces are very restricted, e.g. Abelian groups of odd rank bigger than
2 are not possible; on the other hand, Kotschick [606,Kotschick,1992a,Bull. London Math.
Soc.] showed that every finitely presented group is the fundamental group of a closed, almost
complex 4-manifold.

S6 is almost complex, but whether it is complex is not known (various papers are not
convincing, e.g. [10,Adler,1969,Amer. J. Math.]), so this is a good low(?)-dimensional case
to try. An orientable, smooth, closed 6-manifold has an almost complex structure iff W3 = 0,
and almost complex structures are classified by integral lifts of w2 (since πk(SO(6)/U(3) =
CP3) = 0 for k = 0, 1, 3, 4, 5, 6, and = Z for k = 2) [1122,Wu,1952,Publ. Inst. Math.
Univ. Strasbourg], (also see section 7 in [1095,Wall,1966,Invent. Math.]).

Problem 5.22 (Yau) What finite groups can act freely and linearly on a complex 3-dimensional
complete intersection in the product of weighted projective spaces?

Remarks: The action may be holomorphic for one complex structure, but not be holomor-
phic after a deformation.

Problem 5.23 (Yau) Is every Kähler manifold diffeomorphic to a complex algebraic man-
ifold?

Remarks: This is true in complex dimensions 1 and 2, but is unknown in complex dimension
3, even for simply connected manifolds.
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Problem 5.24 (Spanier) Given a continuous function f : S3 → R2 and three arbitrary
points x1, x2, x3 ∈ S3, does there exist a rotation ρ ∈ SO(4) such that

fρ(x1) = fρ(x2) = fρ(x3)?

Remarks: This is a special case of the more general Knaster conjecture which is now known
to be false in some cases.

Knaster Conjecture: If f : Sn → Rm is continuous and n − m + 2 arbitrary points,
x1, , , xn−m+2, are given, then there exists a rotation ρ ∈ SO(n + 1) such that

fρ(x1) = · · · = fρ(xn−m+2).

This conjecture is known to fail for a polynomial f : S6 → R3 (and in other cases) [56,
Babenko & Bogatyi,1989,Matematisqeskie Zametki]. Note that if the Knaster conjec-
ture fails for some setting, then it fails for a polynomial map as a consequence of the Stone–
Weierstrass approximation theorem. More and simpler counterexamples have recently been
found by W. Chen [196,1995].

The case n = m was proved by Hopf [502,Hopf,1944,Portugal. Math.] generalizing
the Borsuk–Ulam theorem. In the case m = 1, the conjecture is true if the n + 1 points
form a frame [1128,Yamabe & Yujobo,1950,Osaka Math. J.]. Also, for f : S2 → R the
conjecture holds for four points if they are endpoints of two diameters [667,Livesay,1954,
Ann. of Math.].

In the case n = m+1, the conjecture holds if the three points are vertices of an equilateral
triangle in Sn ⊂ Rn+1 [1130,Yang,1957,Amer. J. Math.]. The case f : S2 → R1 for 3
arbitrary points was proved in [320,Floyd,1955,Proc. Amer. Math. Soc.].

Problem 5.25 (G. Martin) Sullivan [1017,Sullivan,1979] showed that any topological m-
manifold M , m ≥ 5 (or m ≥ 6 if ∂M 6= ∅), has a quasiconformal structure. Let

K(M) = inf
K
{M has a K quasiconformal atlas};

it is a conformal invariant. If M is smooth, then K(M) = 1 by an elementary argument
using arbitrarily small charts.

(A) Does there exist an Mm with K(M) > 1?

(B) Does K(M) = 1 imply that M is smooth?
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Problem 5.26 (Hopf) Given a closed, orientable Mm, is every map f : M →M of degree
±1 a homotopy equivalence?

Remarks: Following [467,Hausmann,1987], the problem splits into two parts:

(A) is π1(f) : π1(M)→ π1(M) injective?

(B) if so, is f∗ : H∗(M ;Zπ)→ H∗(M ;Zπ) an isomorphism (π = π1(M)).

Note that π1(f) is always surjective. (B) is true for m ≤ 4 and (A) fails if the degree of
f is not ±1 and m ≥ 6 [ibid.].

Problem 5.27 Let Mm be a compact m-manifold. Is the topological group Homeo(M) an
ANR?

Remarks: Ferry [301,1977,Ann. of Math.] proved this when M is a compact Hilbert cube
manifold. It is true when m = 2 [684,Luke & Mason,1972,Trans. Amer. Math. Soc.],
but is unknown in higher dimensions. The problem reduces to the case of showing that
Homeo∂(Bm) (homeomorphisms fixing ∂Bm) is an ANR. By work of Geoghegan [370,1972,
Topology] and Toruńczyk [1059,1973,Fund. Math.], a positive answer would imply that
Homeo(M) is an infinite-dimensional manifold modeled on `2, the separable Hilbert space of
square summable sequences.

Recall that Y is an ANR (absolute neighborhood retract) if it is T0 and any function
f : A→ Y , where A is a subset of a T0 space X, extends to a function F : X → Y .

Problem 5.28 (Browder) Is every finite dimensional H-space homotopy equivalent to an
orientable closed m-manifold?

Remarks: An H-space Y is a topological space with a multiplication Y × Y → Y with a
unit. Browder [150,1961,Ann. of Math.] proved that every finite dimensional H-space is
a Poincaré complex. Not all H-spaces are Lie groups [488,Hilton & Roitberg,1969,Ann. of
Math.], [1135,Zabrodsky,1970,Topology]. The answer is yes if π1(Y ) is an odd p-group, or
infinite with at most cyclic 2-torsion [184,Cappell & Weinberger,1988,Topology]. Does it
help to assume dimension ≤ 5?
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Problem 5.29 (Ferry) (A) (Borel Conjectures)

Existence: Given a Poincaré duality group π, its K(π, 1), K, is homotopy equivalent
to a closed, topological m-manifold M .

Remarks: Note that Problem 3.77 is a 3-dimensional version of this Conjecture.

By definition, π is a Poincaré duality group if K satisfies Poincaré duality over Zπ
with respect to a fundamental class in Hm(K;Z) = Z. An attempt at the Conjecture
naturally breaks up into three beginning steps:

(Step 1) Prove that π is finitely presented.

If this is true, Browder [151,1972,Invent. Math.] and Brown [152,1982] show that
K is dominated by a finite complex.

(Step 2) Prove that K can be chosen to be a finite complex.

The obstruction toK being homotopy equivalent to a finite complex is in K̃0(Zπ),
which vanishes if (C) below is true since K̃0(Zπ) is a summand of Wh(Z[π×Z]).

Poincaré duality gives a Zπ homomorphism (cap product) between the based
chain complexes Ck and Cm−k which is a Zπ homology equivalence and thus has
Whitehead torsion in Wh(Zπ). K is called a simple PD space if this torsion is
zero.

(Step 3) Prove that K is simple.

Note that all closed, compact manifolds have finitely presented π1, are homotopy equiv-
alent to finite complexes [585,Kirby & Siebenmann,1977], and are simple, and some-
times these properties are assumed in the Conjecture. With these properties, one is
ready to apply the surgery exact sequence described below.

Uniqueness: If f : Mm → Nm is a homotopy equivalence between closed, aspherical
manifolds, then f is homotopic to a homeomorphism.

Remarks: This is a topological analog of Mostow rigidity and is true in dimensions
≥ 5 in case M (but not necessarily N) is a non-positively curved Riemannian manifold
[294,Farrell & Jones,1989,J. Amer. Math. Soc.]. Note the relation with Problem 4.83.

(B) Under the assumptions of the Uniqueness conjecture, is f a tangential equivalence, i.e.
is f∗(TN) stably isomorphic to TM?

Remarks: This is a version of the integral Novikov conjecture for π1(M).

(C) (Hsiang) If Γ is a torsion-free, finitely presented group, then is Wh(ZΓ) = 0? .

Remarks: (C) may be a step in proving (B), for if f is homotopic to a homeomor-
phism, it must be homotopic to a simple homotopy equivalence which implies that
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Wh(Zπ1(M)) = 0. Note that M aspherical implies that π1(M) is torsion free (and of
course finitely presented). The answer to (C) is yes when Γ is π1 of a non-positively
curved polyhedron [515,Hu,1993,J. Differential Geom.].

The old Problem 3.32 is a special case of this conjecture which was proposed in [511,
Hsiang,1984].

(D) Is there a closed, aspherical, ANR, homology manifold with Quinn index 6= 1?

Remarks: Compare Problem 4.69. If we do not require the homology manifold to be
aspherical, then these exist; in fact there are ones which are homotopy equivalent to Sm

for each m ≥ 6. A yes answer to (D) implies that either the Borel existence conjecture
or the integral Novikov conjecture (see below) fails. For if H is the homology manifold
asked for in (D), and M is the manifold conjectured in (A), then, using a version of the
material below which encompasses homology manifolds (see [1103,Weinberger,1994]),
H and M (which live in S(X)) go to different elements in Hm(Bπ;L0) but the same
element in Lsm(Zπ).

Further remarks: All these problems are versions assuming asphericity of classical prob-
lems in surgery theory. We give a very brief sketch below, but an excellent source for this
material is [1103,Weinberger,1994].

Associated to an m-manifold Mm is a map f : M → Bπ which classifies the universal
cover of M (π = π1(M)). Let α ∈ Hk(Bπ;Q). Then the rational Novikov conjecture for α
is that 〈L4i(M) ∪ f∗(α), µM 〉 is a homotopy invariant.

Any α provides a map g : (Bπ × Bl, ∂) → (Sk+l, ∗) for which α = g∗(1), 1 ∈
Hk+l(Sk+l;Q). After making g(f × id) : (M ×Bl, ∂)→ (Sk+l, ∗) transverse to a point p 6= ∗,
then the preimage of p is a 4i-manifold inM×Bl whose signature equals 〈L4i(M)∪f∗(α), µM 〉.
Thus the rational Novikov conjecture asks whether the signatures of certain submanifolds of
M (or M × Bl) depending on elements of Hk(Bπ;Q) are homotopy invariants.

The modern way to attack this conjecture is, however, not via the above description.
Instead, recall the surgery exact sequence: if Xm is a Poincaré complex with Spivak normal

fibration given byXm ν
→ BG, then suppose, to get started, that ν has a lift toXm ν′

→ BTOP .
Then ν′ provides a basepoint in N (X) (the set of liftings of Xm ν→ BG) and [X,G/TOP ]
acts simply transitively on N (X). Then the surgery exact sequence is

→ Lsm+1(Zπ)→ S(X)→ N (X)
θ
→ Lsm(Zπ)

where, (1) an element (X, ν′) of N (X) provides a normal map g : Nm → X (N is a manifold,
g is degree one, and g is covered by a bundle map from the stable normal bundle of N to the
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bundle over X induced by ν′), and θ(X, ν′) is the obstruction to finding a normal bordism to
a manifold M simple homotopy equivalent to X, and (2) S(X) is the equivalence classes of

pairs (M, g), with M
g
→ X being a simple homotopy equivalence, and (M ′, g′) equivalent to

(M, g) if there exists a homeomorphism of M to M ′ making the obvious diagram homotopy
commute.

The surgery exact sequence is now studied via the following commutative diagram:

N (X)
θ

- Lsm(Zπ)

πm(X+ ∧ L0) =Hm(X;L0)
?

- Hm(Bπ;L0)

Aπ

6

assembly map

= πm(Bπ+ ∧ L0)

where L0 is the quadratic L-theory spectrum of the trivial group; thus

πk(L0)) =



0 k < 0
Z k ≡ 0 (mod 4)
0 k ≡ 1 (mod 4)

Z/2Z k ≡ 2 (mod 4)
0 k ≡ 3 (mod 4)

Very roughly, one can break up the surgery obstruction for Nm → X into the pieces over
each simplex ofX (since these simplices are simply connected, one is led to L0 and the simply
connected surgery groups, Z (signature), 0, Z/2Z (Kervaire invariant), 0); putting the pieces
together leads to the assembly map Aπ. (The real assembly map, at the level of spectra, is
Bπ+ ∧ L0 → L0(Zπ) where the latter spectrum is that for which πm(L0(Zπ)) = Lsm(Zπ)).

In this language, we have the following versions of the Novikov and Borel Conjectures
(which are purely algebraic):

• Integral Novikov Conjecture: If π is torsion free, then Aπ is injective.

• Rational Novikov Conjecture: Aπ ⊗Q is injective.

• Borel Conjecture for π: If π is a Poincaré duality group, then Aπ is an isomorphism.
(This is false for many other π). This Conjecture implies the Borel Existence and
Uniqueness Conjectures above.
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• Modern Borel Conjecture: The L–theory and K–theory assembly maps are all iso-
morphisms for Poincaré duality groups.
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des nœuds albébriques. L’Enseign. Math. 31, 49–98. Problem: 1.100.

[127] Boileau, M. & Zieschang, H. (1984). Heegaard genus of closed orientable Seifert 3-
manifolds. Invent. Math. 76, 455–468. Problems: 1.10, 3.15, 3.92.

[128] Bonahon, F. (1983a). Cobordism of automorphisms of surfaces. Ann. Sci. École Norm.
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[151] Browder, W. (1972). Poincaré spaces, their normal fibrations and surgery. Invent.
Math. 17, 191–202. Problem: 5.29.

[152] Brown, K. S. (1982). Cohomology of groups, Volume 87 of Graduate Texts in Math.
Springer-Verlag. Problem: 5.29.

[153] Brown, M. (1960). A proof of the generalized Schoenflies theorem. Bull. Amer. Math.
Soc. 66, 74–76. Problem: 4.88.

[154] Brunner, A. M., Mayland, Jr., E. J., & Simon, J. (1982). Knot groups in S4 with
nontrivial homology. Pacific J. Math. 103, 315–324. Problem: 4.29.

[155] Bryant, J., Ferry, S. C., Mio, W., & Weinberger, S. (1993). Topology of homology
manifolds. Bull. Amer. Math. Soc. 28, 324–328. Problem: 4.69.

[156] Bryant, J., Ferry, S. C., Mio, W., & Weinberger, S. (1995). Topology of homology
manifolds. To appear in Ann. of Math.. Problem: 4.69.

[157] Buchdahl, N., Kwasik, S., & Schultz, R. (1990). One fixed point actions on low-
dimensional spheres. Invent. Math. 102, 633–662. Problem: 3.46.

[158] Bullock, D. (1994). Skein related links in 3-manifolds. Topology Appl. 60, 235–248.
Problem: 1.92.



312 BIBLIOGRAPHY

[159] Bullock, D. (1995a). An integral invariant of 3-manifolds derived from the Kauffman
bracket. Preprint. Problem: 1.92.

[160] Bullock, D. (1995b). The (2,∞)–skein module of the complement of a (2, 2p + 1) torus
knot. To appear in J. Knot Theory Ramifications. Problem: 1.92.

[161] Burde, G. (1971). On branched coverings of S3. Canad. J. Math 23, 84–89.
Problem: 1.11.

[162] Burde, G. & Zieschang, H. (1966). Eine Kennzeichnung der Torusknoten. Math.
Ann. 167, 169–175. Problem: 1.13.

[163] Burde, G. & Zieschang, H. (1985). Knots. W. de Gruyter. Problem: 3.15.

[164] Burghelea, D. & Lashof, R. K. (1974). The homotopy type of the space of diffeomor-
phisms. II. Trans. Amer. Math. Soc. 196, 37–50. Problem: 4.126.

[165] Burns, R. G., Karrass, A., & Solitar, D. (1987). A note on groups with separable finitely
generated subgroups. Bull. Austral. Math. Soc. 36, 153–160. Problem: 3.76.

[166] Buskirk, J. M. V. (1983). A class of negative-amphicheiral knots and their Alexander
polynomials. Rocky Mountain J. Math. 13, 413–422. Problem: 1.66.

[167] Callahan, P. (1994). Symmetric surgery on asymmetric knots. Preprint. Problem: 1.23.

[168] Camacho, C. & Lins Neto, A. (1973). Teoria geométrica das folheações, Volume 9 of
Projeto Euclides. IMPA. Translation to English in [169].

[169] Camacho, C. & Lins Neto, A. (1985). Geometric Theory of Foliations. Birkhäuser.
Original in Portuguese in [168]. Problem: 3.53.

[170] Canary, R. D. (1993a). Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc. 6, 1–35.
Problem: 3.52.

[171] Canary, R. D. (1993b). Geometrically tame hyperbolic 3-manifolds. In R. Greene &
S.-T. Yau (Eds.), Differential Geometry, Volume 54 part 3 of Proc. Sympos. Pure Math., pp.
99–109. American Math. Soc. Problem: 3.52.

[172] Canary, R. D. (1994). Covering theorems for hyperbolic 3-manifolds. In K. Johann-
son (Ed.), Low-Dimensional Topology, Knoxville, 1992, pp. 21–30. International Press.
Problems: 3.14, 3.52.



BIBLIOGRAPHY 313

[173] Canary, R. D., Epstein, D. B. A., & Green, P. (1987). Notes on notes of Thurston. In
D. B. A. Epstein (Ed.), Analytic and Geometric Aspects of Hyperbolic Space, Volume 111 of
London Math. Soc. Lect. Note Ser., pp. 3–92. Cambridge Univ. Press. Proceedings of the
two symposia on hyperbolic geometry, Kleinian groups and 3-dimensional topology held at
the Univ. of Warwick and the Univ. of Durham, 1984. Problem: 3.14.

[174] Canary, R. D. & Minsky, Y. (1995). On limits of tame hyperbolic 3-manifolds. To appear
in J. Differential Geom.. Problem: 3.52.

[175] Candel, A. (1993). Uniformization of surface laminations. Ann. Sci. École Norm. Sup.
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Problem: 4.67.

[246] Doll, H. (1992). A generalized bridge number for links in 3-manifolds. Math. Ann. 294,
701–717. Problem: 1.73.

[247] Donaldson, S. K. (1983). An application of gauge theory to 4-dimensional topology. J.
Differential Geom. 18, 279–315. Problems: 4.1, 4.6, 4.19, 4.37.

[248] Donaldson, S. K. (1986). Connections, cohomology and the intersection forms of 4-
manifolds. J. Differential Geom. 24, 275–341. Problems: 4.1, 4.26, 4.92, 4.100.

[249] Donaldson, S. K. (1987a). Irrationality and the h-cobordism conjecture. J. Differential
Geom. 26, 141–168. Problem: 4.45.

[250] Donaldson, S. K. (1987b). The orientation of Yang–Mills moduli spaces and 4-manifold
topology. J. Differential Geom. 26, 397–428. Problems: 1.46, 4.1, 4.3, 4.19.

[251] Donaldson, S. K. (1990). Polynomial invariants for smooth four-manifolds. Topology 29,
257–315. Problems: 4.11, 4.37, 4.91, 4.130.

[252] Donaldson, S. K. & Kronheimer, P. B. (1990). Geometry of Four-Manifolds. Oxford
Univ. Press. Problem: 4.45.

[253] Donaldson, S. K. & Sullivan, D. P. (1989). Quasiconformal 4-manifolds. Acta Math. 163,
181–252. Problem: 4.44.

[254] DuBois, P. & Michel, F. (1994). The integral Seifert form does not determine the topology
of plane curve germs. J. Algebraic Geom. 3, 1–38. Problem: 3.29.

[255] Dunbar, W. D. (1988). Hierarchies for 3-orbifolds. Topology Appl. 29, 267–283.
Problem: 3.46.

[256] Dunbar, W. D. & Meyerhoff, G. R. (1994). Volumes of hyperbolic 3-orbifolds. Indiana
Univ. Math. J. 43, 611–637. Problem: 3.60.

[257] Dunwoody, M. J. (1976). The homotopy type of a two-dimensional complex. Bull. London
Math. Soc. 8, 282–285. Problem: 5.1.

[258] Dunwoody, M. J. (1985). Accessibility of finitely presented groups. Invent. Math. 81,
449–457. Problems: 1.51, 5.10.

[259] Dunwoody, M. J. (1993). An inaccessible group. In G. A. Niblo & M. A. Roller (Eds.),
Geometric Group Theory I (Sussex, 1991), Volume 181 of London Math. Soc. Lect. Note
Ser., pp. 75–78. Cambridge Univ. Press. Problem: 5.10.



BIBLIOGRAPHY 319

[260] Dunwoody, M. J. (1995). Folding sequences. Preprint, Univ. of Southampton.
Problem: 5.10.

[261] Durfee, A. H. (1974). Fibered knots and algebraic singularities. Topology 13, 47–59.
Problem: 3.29.

[262] Durfee, A. H. (1975). Knot invariants of singularities. In R. Hartshorne (Ed.), Algebraic
Geometry, Volume 29 of Proc. Sympos. Pure Math., pp. 441–448. American Math. Soc. Proc.
of a Conf. in Humboldt State Univ, Arcata - 1974. Problem: 3.27.

[263] Durfee, A. H. (1978). The signature of smoothings of complex surface singularities. Math.
Ann. 232, 85–98. Problem: 3.31.

[264] Earle, C. & Sipe, P. (1995). Invariant Teichmüller disks and the monodromy of holomor-
phic families. Preprint. Problem: 2.7.

[265] Eccles, P. J. (1980). Multiple points of codimension one immersions of oriented manifolds.
Math. Proc. Cambridge Philos. Soc. 87, 213–220. Problem: 4.61.

[266] Eckmann, B. (1993). Manifolds of even dimension with amenable fundamental group.
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Prog. Math. Birkhäuser. Problem: 1.39.

[423] Guillou, L. & Marin, A. (1986c). Une extension d’un théorème de Rohlin sur la signature.
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[755] Metzler, W. (1976). Über den Homotopietyp zweidimensionaler CW-Komplexe und Ele-
mentartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende
Relationen. J. Reine Angew. Math. 285, 7–23. Problem: 5.1.

[756] Metzler, W. (1990). Die Unterscheidung von Homotopietyp und einfachen Homotopietyp
bei zweidimensionalen Komplexen. J. Reine Angew. Math. 403, 201–219. Problem: 5.1.

[757] Meyerhoff, G. R. (1985). The cusped hyperbolic 3-orbifold of minimum volume. Bull.
Amer. Math. Soc. 13, 154–156. Problem: 3.60.

[758] Mihalik, M. (1995a). Artin and Coxeter groups are semistable at infinity. Preprint.
Problem: 3.7.

[759] Mihalik, M. (1995b). Compactifying coverings of 3-manifolds. Preprint. Problem: 3.8.

[760] Mihalik, M. & Tschantz, S. (1995). Tame combings and the quasi-simply-filtered condi-
tion for groups. Preprint. Problem: 3.7.

[761] Mikasa, J. (1993). On projections of spatial theta-curves. Ph. D. thesis, Kwansei Gakuin
Univ. In Japanese. Problem: 5.16.

[762] Milgram, R. J. (1985). Evaluating the Swan finiteness obstruction for periodic groups.
In Algebraic and Geometric Topology, Volume 1126 of Lecture Notes in Math., pp. 127–158.
Springer-Verlag. Problem: 3.37.

[763] Milnor, J. W. (1954). Link groups. Ann. of Math. 59, 177–195. Problem: 1.97.

[764] Milnor, J. W. (1957a). Groups which act on Sn without fixed points. Amer. J. Math. 79,
623–630. Problems: 3.37, 4.121.

[765] Milnor, J. W. (1957b). Isotopy of links. In R. H. Fox, D. C. Spencer, & A. W. Tucker
(Eds.), Algebraic Geometry and Topology - A Symposium in Honor of Solomon Lefschetz,
Volume 12, pp. 280–306. Princeton Univ. Press. Problem: 1.96.



354 BIBLIOGRAPHY

[766] Milnor, J. W. (1968a). Infinite cyclic coverings. In J. G. Hocking (Ed.), Conference on the
Topology of Manifolds (Michigan St. U., 1967), pp. 115–133. Prindle, Weber and Schmidt.
Problem: 3.20.

[767] Milnor, J. W. (1968b). Singular Points of Complex Hypersurfaces, Volume 61 of Ann. of
Math. Stud. Princeton Univ. Press. Problem: 1.4.

[768] Milnor, J. W. (1983). On polylogarithms, Hurwitz zeta functions, and their Kubert
identities. L’Enseign. Math. 29, 281–322. Problem: 3.62.

[769] Milnor, J. W. & Husemoller, D. H. (1973). Symmetric Bilinear Forms, Volume 73 of
Ergeb. Math. Grenzgeb. (3). Springer-Verlag. Problem: 4.1.

[770] Milnor, J. W. & Thurston, W. P. (1977). Characteristic numbers of 3-manifolds.
L’Enseign. Math. 23, 249–254. Problem: 3.16.

[771] Minsky, Y. (1994). On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds.
J. Amer. Math. Soc. 7, 539–588. Problems: 3.52, 3.56.

[772] Miyamoto, Y. (1994). Volumes of hyperbolic manifolds with geodesic boundary. Topol-
ogy 33, 613–630. Problem: 3.60.

[773] Miyaoka, Y. (1974). Kähler metrics on elliptic surfaces. Proc. Japan Acad. Ser. A Math.
Sci. 50, 533–536. Problem: 4.37.

[774] Miyaoka, Y. (1977). On the Chern numbers of surfaces of general type. Invent. Math. 42,
225–237. Problems: 4.39, 5.21.

[775] Moise, E. E. (1977). Geometric Topology in Dimensions 2 and 3, Volume 47 of Graduate
Texts in Math. Springer-Verlag. Problem: 3.97.

[776] Moise, E. E. (1979). Statically tame periodic homeomorphisms of compact connected
3-manifolds, I. Homeomorphisms conjugate to rotations of the 3-sphere. Trans. Amer. Math.
Soc. 252, 1–47. Problem: 3.42.

[777] Moise, E. E. (1980). Statically tame periodic homeomorphisms of compact connected
3-manifolds, II. Statically tame implies tame. Trans. Amer. Math. Soc. 259, 255–280.
Problem: 3.42.

[778] Moishezon, B. G. & Teicher, M. (1987). Simply-connected algebraic surfaces of positive
index. Invent. Math. 89, 601–643. Problems: 4.39, 4.91.

[779] Montesinos, J. M. (1978). 4-manifolds, 3-fold covering spaces and ribbons. Trans. Amer.
Math. Soc. 245, 453–467. Problem: 4.113.



BIBLIOGRAPHY 355

[780] Montesinos, J. M. (1985). A note on moves and on irregular covers of S4. In J. R.
Harper & R. Mandelbaum (Eds.), Combinatorial Methods in Topology and Algebraic Geom-
etry (Rochester, 1982), Volume 44 of Contemp. Math., pp. 345–349. Problem: 4.113.

[781] Montesinos, J. M. & Whitten, W. (1986). Constructions of two-fold branched covering
spaces. Pacific J. Math. 125, 415–446. Problems: 3.25, 3.86.

[782] Montgomery, D. C. & Yang, C. T. (1972). Differentiable pseudo-free circle actions on
homotopy seven spheres. In Conference on Compact Transformation Groups, Lecture Notes
in Math., pp. 41–101. Springer-Verlag. Proc. of a Conference in Univ. of Massachusetts,
Amherst. Problem: 4.123.

[783] Montgomery, D. C. & Zippin, L. (1954). Examples of transformation groups. Proc.
Amer. Math. Soc. 5, 460–465. Problem: 3.38.

[784] Moore, G. W. & Seiberg, N. (1989). Classical and quantum conformal field theory.
Comm. Math. Phys. 123, 177–254. Problem: 2.2.

[785] Morgan, J. W. (1979). Non-singular Morse–Smale flows on 3-dimensional manifolds.
Topology 18, 41–54. Problem: 3.9.

[786] Morgan, J. W. (1984). On Thurston’s uniformization theorem for three-dimensional
manifolds. In H. Bass & J. W. Morgan (Eds.), The Smith Conjecture, pp. 37–125. Academic
Press. Problem: 3.14.

[787] Morgan, J. W. & Mrowka, T. S. (1992). A note on Donaldson’s polynomial invariants.
Internat. Math. Res. Notices, bound within Duke Math. J. 68, 223–230. Problem: 4.130.

[788] Morgan, J. W. & Mrowka, T. S. (1993). On the diffeomorphism classification of regular
elliptic surfaces. Internat. Math. Res. Notices, bound within Duke Math. J. 70, 183–184.
Problem: 4.11.

[789] Morgan, J. W. & O’Grady, K. G. (1994). Differential Topology of Complex Surfaces,
Volume 1545 of Lecture Notes in Math. Springer-Verlag. Problem: 4.11.

[790] Morgan, J. W. & Shalen, P. B. (1984). Valuations, trees, and degenerations of hyperbolic
structures, I. Ann. of Math. 120, 401–476. Problem: 3.14.

[791] Morgan, J. W. & Shalen, P. B. (1988a). Degenerations of hyperbolic structures, II:
Measured laminations, trees, and 3-manifolds. Ann. of Math. 127, 403–456. Problem: 3.14.

[792] Morgan, J. W. & Shalen, P. B. (1988b). Degenerations of hyperbolic structures, III: Ac-
tions of 3-manifold groups on trees and Thurston’s compactness theorem. Ann. of Math. 127,
457–520. Problem: 3.14.



356 BIBLIOGRAPHY
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[991] Seifert, H. & Threlfall, W. (1980). A Textbook of Topology, Volume 89 of Pure and
Applied Mathematics. Academic Press. Transl. of [989].

[992] Shiga, H. & Tanigawa, H. (1989). On the Maskit coordinates of Teichmüller space and
modular transformations. Kodai Math. J. 12, 437–43. Problem: 2.7.

[993] Shimabara, M. (1988). Knots in certain spatial graphs. Tokyo J. Math. 11, 405–413.
Problem: 5.15.

[994] Shubert, H. (1953). Knoten und Vollringe. Acta Math. 90, 131–286. Problem: 1.6.

[995] Siebenmann, L. C. (1970). Are nontriangulable manifolds triangulable? In J. C. Cantrell
& C. H. Edwards, Jr. (Eds.), Topology of Manifolds, (Georgia, 1969), pp. 77–84. Markham
Pub. Co. Problem: 3.1.

[996] Siebenmann, L. C. (1980). On vanishing of the Rohlin invariant and nonfinitely am-
phicheiral homology. In U. Koschorke & W. D. Neumann (Eds.), Topology Symposium,
Siegen 1979, Volume 788 of Lecture Notes in Math., pp. 172–222. Problem: 3.24.

[997] Simon, J. (1970). Some classes of knots with Property P. In J. C. Cantrell & C. H.
Edwards, Jr. (Eds.), Topology of Manifolds, (Georgia, 1969), pp. 195–199. Markham Pub.
Co. Problem: 1.15.



370 BIBLIOGRAPHY

[998] Simon, J. (1971). On knots with nontrivial interpolating manifolds. Trans. Amer. Math.
Soc. 160, 467–473. Problem: 1.15.

[999] Simon, J. (1973). An algebraic classification of knots in S3. Ann. of Math. 97, 1–13.
Problem: 1.13.

[1000] Simon, J. (1975). On the problems of determining knots by their complements and knot
complements by their groups. Proc. Amer. Math. Soc. 57, 140–142. Problem: 1.13.

[1001] Simon, J. (1976). Compactification of covering spaces of compact 3-manifolds. Michigan
Math. J. 23, 245–256. Problem: 3.8.

[1002] Siu, Y.-T. (1983). Every K3 surface is Kähler. Invent. Math. 73, 139–150.
Problem: 4.37.

[1003] Skinner, A. (1994). The word problem in a class of non-Haken 3-manifolds. Topology 33,
215–239. Problem: 3.81.

[1004] Smale, S. (1959). Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc. 10, 621–626.
Problem: 4.126.

[1005] Smale, S. (1967). Differential dynamical systems. Bull. Amer. Math. Soc. 73, 747–819.
Problem: 3.109.

[1006] Smillie, J. (1995). Teichmüller disks in moduli space. Preprint. Problem: 2.7.

[1007] Smith, P. A. (1939). Transformations of finite period, II. Ann. of Math. 40, 690–711.
Problem: 3.38.

[1008] Smythe, N. (1966). Boundary links. In R. H. Bing & R. J. Bean (Eds.), Topology
Seminar, Wisconsin 1965, Volume 60 of Ann. of Math. Stud., pp. 69–72. Princeton Univ.
Press. Problem: 1.36.

[1009] Stallings, J. R. (1965). Homology and central series of groups. J. Algebra 2, 170–181.
Problem: 3.79.

[1010] Stallings, J. R. (1978). Construction of fibered knots and links. In R. J. Milgram (Ed.),
Algebraic and Geometric Topology (Stanford, 1976), Volume 32, part II of Proc. Sympos.
Pure Math., pp. 55–60. American Math. Soc. Problem: 1.83.

[1011] Stern, R. J. (1978). Some more Brieskorn spheres which bound contractible manifolds.
Notices Amer. Math. Soc. 25, A448. Abstract 78T–G75. Problem: 4.2.
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